C12T5P1 测试练习

Cork

Cork - the thick _____ bark _____ of the cork oak _____ tree (*Quercus suber*) - is a remarkable _____ material. It is tough _____, elastic _____, buoyant _____, and fire-resistant _____, and suitable for a wide range of purposes. It has also been used for millennia _____; the ancient Egyptians sealed ______ their sarcophagi (stone coffins) with cork, while the ancient Greeks and Romans used it for anything from beehives ______ to sandals ______

And the cork oak itself is an extraordinary ______ tree. Its bark grows up to 20 cm in thickness, insulating ______ the tree like a coat wrapped ______ around the trunk ______ and branches ______ and keeping the inside at a constant ______ 20 all year round. Developed most probably as a defence ______ against forest fires, the bark of the cork oak has a particular cellular structure ______ - with about 40 million cells per cubic centimetre ______ - that technology has never succeeded in replicating _______. The cells are filled with ______ air, which is why cork is so buoyant.

It also has an elasticity _____ that means you can squash _____ it and watch it spring back _____ to its original size and shape _____ when you release _____ the pressure. Cork oaks grow in a number of Mediterranean _____ countries, including Portugal, Spain, Italy, Greece and Morocco. They flourish _____ in warm, sunny climates where there is a minimum of 400 millimetres _____ of rain per year, and not more than 800 millimetres. Like grape vines _____ , the trees thrive _____ in poor soil, putting down deep roots _____ in search of moisture _____ and nutrients _____. Southern Portugal's Alentejo region meets _____ all of these requirements, which explains why, by the early 20th century, this region had become the world's largest producer of cork, and why today it accounts for _____ roughly _____ half of all cork production around the world.

Most cork forests are family-owned ______. Many of these family businesses, and indeed many of the trees themselves, are around 200 years old. Cork production is, above all, an exercise in patience _______. From the planting of a cork sapling ______ to the first harvest ______ takes 25 years, and a gap of _______ approximately _______ a decade ______ must separate harvests from an individual tree. And for top-quality cork, it's necessary to wait a further 15 or 20 years. You even have to wait for the right kind of summer's day to harvest cork. If the bark is stripped ______ on a day when it's too cold - or when the air is damp ______ - the tree will be damaged.

Cork harvesting is a very specialized _____ profession _____. No mechanical means of stripping cork bark has been invented, so the job is done by teams of highly skilled workers. First, they make vertical cuts down the bark using small sharp axes _____, then lever _____ it away in pieces as large as they can manage. The most skilful corkstrippers prise _____ away a semi-circular _____ husk _____ that runs the length of the trunk from just above ground level to the first branches. It is then dried on the ground for about four months, before being taken to factories, where it is boiled _____ to kill any insects that might remain in the cork. Over 60% of cork then goes on to be made into traditional bottle stoppers _____, with most of the remainder being used in the construction trade. Corkboard and cork tiles are ideal _____ for thermal _____ and acoustic insulation _____, while granules of cork are used in the manufacture of concrete _____.

Recent years have seen the end of the virtual _____ monopoly _____ of cork as the material for bottle stoppers, due to concerns about the effect it may have on the contents of the bottle. This is caused by a chemical compound ______ called 2,4,6-trichloroanisole (TCA), which forms through the interaction of plant phenols, chlorine and mould. The tiniest concentrations - as little as three or four parts to a trillion ______ - can spoil ______ the taste of the product contained in the bottle. The result has been a gradual yet steady move first towards plastic ______ s

stoppers and, more recently, to aluminium screw caps _____. These substitutes ______ are cheaper to manufacture and, in the case of screw caps, more convenient for the user.

The classic ______ cork stopper does have several advantages, however. Firstly, its traditional image ______ is more in keeping with that of the type of high quality goods with which it has long been associated ______. Secondly - and very importantly - cork is a sustainable ______ product that can be recycled ______ without difficulty. Moreover, cork forests are a resource ______ which support local biodiversity ______, and prevent desertification ______ in the regions where they are planted. So, given the current concerns about environmental issues, the future of this ancient material once again looks promising ______.