

## **READING PASSAGE 1**

You should spend about 20 minutes on **Questions 1-13**, which are based on Reading Passage 1 below.

## **LET'S GO BATS**

| A | Bats have a problem: now to find their way around in the dark. They nunt at hight, and cannot   |
|---|-------------------------------------------------------------------------------------------------|
|   | use light to help them find prey ( ) and avoid obstacles ( ). You might                         |
|   | say that this is a problem of their own making ( ), one that they could avoid simply            |
|   | by changing their habits and hunting by day. But the daytime economy (                          |
|   | already heavily exploited ( ) by other creatures ( ) such as birds.                             |
|   | Given that there is a living to be made ( ) at night, and given that ( )                        |
|   | alternative ( ) daytime trades are thoroughly ( ) occupied                                      |
|   | ( ), natural selection has favoured ( ) bats that make a go                                     |
|   | ( ) of the night-hunting ( ) trade. It is probable that the nocturnal                           |
|   | ( ) trades go way back in ( ) the ancestry ( ) of all                                           |
|   | mammal ( ) s. In the time when the dinosaurs ( ) dominated                                      |
|   | ( ) the daytime economy, our mammalian ancestors probably only managed to                       |
|   | survive at all because they found ways of scraping a living ( ) at night. Only after            |
|   | the mysterious ( ) mass extinction ( ) of the dinosaurs about 65                                |
|   | million years ago were our ancestors able to emerge ( ) into the daylight in any                |
|   | substantial ( ) numbers.                                                                        |
| В | Bats have an engineering ( ) problem: how to find their way and find their prey in              |
|   | the absence of ( ) light. Bats are not the only creatures to face this difficulty today.        |
|   | Obviously the night-flying ( ) insects ( ) that they prey on must find                          |
|   | their way about somehow ( ). Deep-sea ( ) fish and whales                                       |
|   | ( ) have little or no light by day or by night. Fish and dolphins (                             |
|   | that live in extremely muddy ( ) water cannot see because, although there is light,             |
|   | it is obstructed ( ) and scattered ( ) by the dirt ( ) in the                                   |
|   | water. Plenty of other modern animals make their living in conditions where seeing is difficult |
|   | or impossible.                                                                                  |
| C | Given the questions of how to manoeuvre ( ) in the dark, what solutions                         |
|   | ( ) might an engineer consider? The first one that might occur to him is to                     |
|   | manufacture ( ) light, to use a lantem ( ) or a searchlight                                     |
|   | ( ) . Fireflies ( ) and some fish (usually with the help of bacteria                            |
|   | ( ) have the power to manufacture their own light, but the process seems to                     |
|   | consume ( ) a large amount of energy. Fireflies use their light for attracting mate             |
|   | ( ) s. This doesn't require a prohibitive ( ) amount of energy: a male's                        |
|   | tiny pinprick ( ) of light can be seen by a female from some distance on a dark                 |
|   | night, since her eyes are exposed ( ) directly to the light source itself. However,             |
|   | using light to find one's own way around requires vastly more energy, since the eyes have to    |

|   | detect ( ) the tiny fraction ( ) of the light that bounces (                                          |
|---|-------------------------------------------------------------------------------------------------------|
|   | off each part of the scene ( ) . The light source ( ) must therefore be                               |
|   | immensely ( ) brighter if it is to be used as a headlight ( ) to                                      |
|   | illuminate ( ) the path, than if it is to be used as a signal ( ) to others.                          |
|   | In any event, whether or not the reason is the energy expense ( ), it seems to be the                 |
|   | case that, with the possible exception ( ) of some weird ( ) deep-sea                                 |
|   | fish, no animal apart from ( ) man uses manufactured light to find its way about.                     |
| D | What else might the engineer think of?. Well, blind humans sometimes seem to have an                  |
|   | uncanny ( ) sense of obstacles in their path. It has been given the name 'facial                      |
|   | vision', because blind people have reported that it feels a bit like the sense of touch, on the face. |
|   | One report tells of ( ) a totally blind boy who could ride ( ) his                                    |
|   | tricycle ( ) at good speed round the block ( ) near his home, using                                   |
|   | facial vision. Experiments showed that, in fact, facial vision is nothing to do with touch or the     |
|   | front of the face, although the sensation ( ) may be referred to the front of the face,               |
|   | like the referred pain in a phantom ( ) limb ( ). The sensation of facial                             |
|   | vision, it turns out, really goes in through the ears. Blind people, without even being aware of      |
|   | the fact, are actually using echoes ( ) of their own footsteps and of other sounds,                   |
|   | to sense the presence ( ) of obstacles. Before this was discovered ( ),                               |
|   | engineers had already built instruments ( ) to exploit the principle, for example to                  |
|   | measure the depth of the sea under a ship. After this technique had been invented, it was only a      |
|   | matter of time before weapons designers ( ) adapted it for ( ) the                                    |
|   | detection of submarines ( ). Both sides in the Second World War relied heavily on                     |
|   | these devices ( ), under such codenames ( ) as Asdic (British) and                                    |
|   | Sonar ( ) (American), as well as Radar ( ) (American) or RDF                                          |
|   | (British), which uses radio echoes rather than sound echoes.                                          |
| E | The Sonar and Radar pioneers ( ) didn't know it then, but all the world now                           |
|   | knows that bats, or rather natural selection working on bats, had perfected the system tens of        |
|   | millions of years earlier, and their 'radar' achieves feats ( ) of detection and                      |
|   | navigation ( ) that would strike an engineer dumb ( ) with                                            |
|   | admiration ( ) . It is technically ( ) incorrect to talk about bat 'radar',                           |
|   | since they do not use radio waves. It is sonar. But the underlying ( ) mathematical                   |
|   | ( ) theories of radar and sonar are very similar, and much of our scientific                          |
|   | understanding of the details of what bats are doing has come from applying radar theory to            |
|   | them. The American zoologist ( ) Donald Griffin, who was largely responsible for                      |
|   | the discovery of sonar in bats, coined ( ) the term 'echolocation' ( )                                |
|   | to cover ( ) both sonar and radar, whether used by animals or by human                                |
|   | instruments.                                                                                          |