PASSAGE 1 The life and work of Marie Curie

Marie Curie is probably the most famous woman scientist who has ever lived. Born Maria Sklodowska in Poland in 1867, she is famous for her work on radioactivity (), and was twice a winner of the Nobel Prize. With her husband, Pierre Curie, and Henri Becquerel, she was awarded the 1903 Nobel Prize for Physics, and was then sole () winner of the 1911 Nobel Prize for Chemistry. She was the first woman to win a Nobel Prize.

From childhood, Marie was remarkable for her prodigious () memory, and at the age of 16 won a gold medal on completion () of her secondary education. Because her father lost his savings through bad investment, she then had to take work as a teacher. From her earnings she was able to finance her sister Bronia's medical studies in Paris, on the understanding that Bronia would, in turn, later help her to get an education

In 1891 this promise was fulfilled () and Marie went to Paris and began to study at the Sorbonne (the University of Paris). She often worked far into the night and lived on little more than bread and butter and tea. She came first in the examination in the physical sciences in 1893, and in 1894 was placed second in the examination in mathematical sciences. It was not until the spring of that year that she was introduced to Pierre Curie.

Their marriage in 1895 marked the start of a partnership that was soon to achieve results of world significance. Following Henri Becquerel's discovery in 1896 of a new phenomenon, which Marie later called radioactivity, Marie Curie decided to find out if the radioactivity discovered in uranium () was to be found in other). She discovered that this was true for thorium (). elements (Turning her attention to minerals, she found her interest drawn to pitchblende, () a mineral () whose radioactivity, superior () to that of pure () uranium, could be explained only by the presence) in the ore of small quantities of an unknown substance () (of very high activity. Pierre Curie joined her in the work that she had undertaken to resolve this problem, and that led to the discovery of the new elements ().). While Pierre Curie devoted himself polonium () and radium (chiefly () to the physical study of the new radiations, Marie Curie struggled () pure radium in the metallic) to obtain () state. This was achieved with the help of the chemist Andre-Louis Debierne, one of Pierre Curie's pupils. Based on the results of this research, Marie Curie received her Doctorate () of Science, and in 1903 Marie and Pierre shared with Becquerel the Nobel Prize for Physics for the discovery of radioactivity.

The births of Marie's two daughters, Irene and Eve, in 1897 and 1904 failed to interrupt () her scientific work. She was appointed () lecturer

in physics at the Ecole Normale Superieure for girls in Sevres, France (1900), and introduced a method of teaching based on experimental () demonstrations.

(

In December 1904 she was appointed chief assistant in the laboratory
directed by Pierre Curie.

The sudden death of her husband in 1906 was a bitter blow () to Marie Curie, but was also a turning point in her career: henceforth () she was to devote all her energy to completing alone the scientific work that they had undertaken. On May 13, 1906, she was appointed to the professorship that had been left vacant on her husband's death, becoming the first woman to teach at the Sorbonne. In 1911 she was awarded the Nobel Prize for Chemistry for the isolation of a pure form of radium.

During World War L, Marie Curie, with the help of her daughter Irene, devoted herself to the development of the use of X-radiography (______), including the mobile units which came to be known as little Curies used for the treatment of wounded soldiers. In 1918 the Radium Institute, whose staff Irene had joined, began to operate in earnest (______), and became a centre for nuclear physics and chemistry. Marie Curie, now at the highest point of her fame (_____) and, from 1922, a member of the Academy of Medicine, researched the chemistry of radioactive substances and their medical applications.

In 1921, accompanied by her two daughters, Marie Curie made a triumphant () journey to the United States to raise funds for research on radium. Women there presented her with a gram of radium for her campaign. Marie also gave lectures in Belgium, Brazil, Spain and Czechoslovakia and, in addition, had the satisfaction of seeing the development of the Curie Foundation in Paris, and the inauguration () in 1932 in Warsaw of the Radium Institute, where her sister Bronia became director.

One of Marie Curies outstanding () achievements was to have understood the need to accumulate intense () radioactive sources, not only to treat illness but also to maintain an abundant () supply for research. The existence in Paris at the Radium Institute () of a stock of 1.5 grams of radium made a decisive contribution to the success of the experiments undertaken in the years around 1930. This work prepared the way for the discovery of the neutron) by Sir James Chadwick and, above all, for the discovery in 1934 by (Irene and Frederic Joliot-Curie of artificial radioactivity A few months after this discovery, Marie Curie died as a result of leukaemia) caused by exposure to radiation. She had often carried test tubes () containing) in her pocket, remarking on the pretty blue-green radioactive isotopes (light they gave off.

Her contribution () to physics had been immense (), not only

in her own work, the importance of which had been demonstrated by her two Nobel Prizes, but because of her influence on subsequent () generations of nuclear physicists and chemists.