FU

在全球化的竞争中, 商学院教育全球化的竞争正在影响着整个世界。而竞争的微观表现主要有:最优质学生的竞争、最资深教授的竞争以及最无边界制度创新设计的 竞争。哈佛商学院 2005 财政年度的收入达到了 3.3 亿美元, 捐助资金高达 21 亿美元, 科研经费达到了 7,700 万美元。毫无疑问, 全球现在是互相联结、互相渗透的, 已经不 存在"纵容"我们苟安一隅的纯粹孤岛。在当今的全球竞逐与机会中, 我们如何能够占 据一席之地? 我相信大家准备 GMAT 考试并去追逐自己的梦想本身就是对这个问题 的最好回答。

2005年中秋节,正在哈佛商学院学习的我应邀参加了哈佛大学肯尼迪政府学院中 国学生会组织的中秋节联欢会。正在肯尼迪政府学院学习的中国 60 余名高官也出席 了由美国华商会赞助的这次联欢会,并且谈话中经常不经意地论及他们所学的哈佛案 例或者正在迅猛崛起的中国的改革。我越发感觉到在美国学习的中国学生或旅美的炎 黄子孙的自信以及作为中国人的自豪与骄傲。参加联欢会的中国学生基本上都知道新 东方,有几个参加过我 2001年前后所教授班级的学生见到我很激动,还有几个在美国 工作然后又到哈佛读书的学生告诉我,他们都知道新东方,因为他们让国内的朋友购买 过新东方出版的出国相关的书籍。但当他们提及其中必然会有我所编著的《GMAT 数 学高分快速突破》、《GRE 数学高分快速突破》、《GRE GMAT LSAT 逻辑推理》、 《GRE&LSAT 分析推理捷进》等书时,健谈的我竟不知该说些什么,只是觉得惭愧得 很。五六年来,一直在"忙碌",一直在"积累",一直在"自我安慰",没有写过一本书。我 觉得我是应该做点什么了。

由于 ETS 在投资优先决策、战略导向以及实施能力等方面不再能够很好地满足 GMAC(Graduate Management Admission Council)的要求,GMAC 决定:自 2006 年 1 月 1 日起,ACT 公司将替代 ETS 接管 GMAT 考试的研发工作,而 Pearson VUE 考试 中心将负责该考试的实施。GMAT 考试将贯彻其一向的切实、可靠的风格,由 Pearson VUE 提供的 GMAT 成绩将可以与由 ETS 提供的成绩进行直接比较。而我们知道, GMAT 的成绩在五年之内有效。因此,尽管 GMAT 的考试承包商发生了变化,但其难 度、可信度在五年之内仍具有可比性,所以其考试内核与实质不应该会有较大的变化。

做点事情的责任感促使我"忙中偷闲"来修改本书。本书自2001年出版以来,成为广

大 GMAT 考生的首选,一印再印,帮助数万读者实现了梦想。本次修订采纳了许多读者 来信中的批评与建议,整合了过去5年 GMAT 考试的考点和精华,预测了未来几年 GMAT 的发展趋势,参考了大量的相关文献与著作,在此一并致谢。由于时间与本人水 平所限,若有瑕疵,恳请读者朋友能不吝指出,可发送邮件至:better365@gmail.com。

世界上最稀缺的可能是时间。阅读一本书的时间成本要远远大于购买一本书的成本。我真心希望这本书能够帮助你节省宝贵的复习时间,增强你真正的自信,取得你的 伟大成功!

陈向东

2006年5月7日于北京

第一版前言

准备 GMAT 考试,有没有必要花费有限的宝贵时间把数学题做上若干遍? GMAT 数学 所考查的知识点究竟是什么,有没有必要把高中数学甚至大学数学再复习一遍? GMAT 数学 机考之后考题有所变化,怎么样才能高效地利用 GMAT 数学笔试的考试试题去准备机考? 许多许多的疑问以及许多许多的困惑都可以从本书中找到答案。作为一本全面系统地梳理、 归纳、讲解 GMAT 数学考点并对之进行分项、密集强化训练的书,其写作原因主要是基于 以下几个事实:

- •由于众所周知的原因,许多考生要么因考点的遗忘,要么因数学术语的生疏,要么因 方法不当,做错或根本就不会做某些题目。全面梳理考点,归纳数学术语,指点做题 技巧,能使我们事半功倍——在最短的时间内突破GMAT数学,从而有更多的时间 与精力用在最易提高成绩的VERBAL 和WRITING上。
- GMAT 数学机考之后,数学考试的时间、题量及难度都有所变化,部分笔试中简单无聊的题目已不可能成为考查的对象。而据不完全统计,90%以上的 GMAT 考生还是最终辛辛苦苦地花费了大量的宝贵时间做了若干遍笔试试题——题题必做,以求心里踏实。但大量反复地做一些考查初中甚至小学数学知识点的题目不仅仅会浪费一个人的宝贵时间(不言而喻,时间对于出国族人士而言甚为稀缺),而且还会降低一个人的思维敏捷度与判断对错的能力(一道简单的题目做过 10 遍以上,一个人的水平会降至最初的水平)。搜集、分析历年的 GMAT 考题,筛选并整理中国学生必做且能够真正适应机考的题目,能节省中国考生的宝贵时间,使我们在有限的宝贵时间内,做更多我们最应该做的事,做好更多的事,把事情做得更好!
- 很多朋友与新东方学校的学员都迫切希望能有一本对 GMAT 数学考点进行全面讲解、 剖析、归纳并提供针对性训练的书。

本书具有以下几个特点:

- ☞ 透析出题规律,详尽梳理归纳数学考点,把握最新命题动向:完全按照 ETS 的数学 考试大纲,全面系统地梳理、归纳、讲解 GMAT 数学考点,免去因某考点的生疏而 寻读数学教科书之苦。
- ☞ 采用分项思维密集训练的方法,激发考生的数学潜力:在熟悉数学术语的基础之上, 本书第二篇对各类数学考题进行分项密集强化训练。读者可通过考题进一步熟悉、掌

握相关数学术语,并且熟悉相关题目的问法、句型及解题方法和技巧。

- ☞ 易错题、重点题与难题一览无遗:本书所选的所有题目全部来自于作者对新东方学员 进行统计调查而产生的公认的易错题、重点题与难题,弥补了因新东方的课时限制而 对数学讲解较少的缺陷。
- ☞ 数学术语、解题窍门全面总结:所有考试中遇到的或有可能遇到的数学术语均在附录 中给出,并给出所有题目的详细讲解。
- ☞ 最新试题模拟:本书第三篇给出 150 道与 GMAT 机考难度相当且为机考可能重点考察的模拟试题,读者可在考前 30 天左右限时进行训练。
- ☞ 再也不用把过多的精力与时间浪费在简单无聊的数学题上:读者阅读本书必能起到事 半功倍的功效,从而再也不用把过多的精力、时间浪费在简单无聊的数学题上。

真诚感谢新东方学校俞敏洪校长和包凡一副校长对本书构架的中肯意见以及对写作本书 的鼓励与支持;更要感谢成千上万的学生,是他们的支持与上进精神使我能最终完成这本 书;最后要感谢本书的责任编辑,他们的辛勤工作使本书更臻完美。

我尽力想奉献给读者一本讲解全面、结构清晰、层次分明、逻辑有序的数学参考教材, 诚挚希望本书能对广大 GMAT 考生在出国求学奋斗的道路上提供有力的帮助与支持,能够 协助与激励大家更快更好更加成功地走向世界,创造人生新的辉煌。但毕竟因水平有限,所 以我真心希望读者及各界人士能对本书的不足之处不吝赐教。

祝大家成功!

陈向东

2001年4月1日于北京新东方学校

第一	·篇	GMA	┎ 数学总论	1
	第一	章 GN	AAT 数学考试的目的及内容	2
	第二	章 中	国考生在 GMAT 数学考试中的常见错误	6
	第三	章 GN	AAT 数学两大题型及其解题策略	10
		第一节	Problem Solving(问题求解题)	10
		第二节	Data Safficiency(数据充分题)	15
<i>k-k-</i>	le le -			
第二	.篇		Г数学分类思维训练 ····································	
	第一	章 Ar	ithmetic(算术)	
		第一节	Integers(整数) ······	23
		第二节	Fractions, Decimals and Percent(分数、小数和百分比)	29
		第三节	Problem Involving Sets (与集合有关的问题)	32
		第四节	Permutation, Combination and Probability (排列,组合及概率)	35
		第五节	重点试题精练及解析	38
	第二	章 Al	gebra (代数) ······	81
		第一节	Rules of Exponents (幂的运算)	81
		第二节	Progressions and Sequence 级数与数列	84
		第三节	Real Number (实数) ······	86
		第四节	Variable and Algebraic Expression(变量和代数表达式)	88
		第五节	Factorable Expression(因式分解)	89
		第六节	Equations (方程) ······	90
		第七节	Algebraic Inequalities (代数不等式)	96
		第八节	Functions(函数) ······	98
		第九节	数学归纳法	99
		第十节	极限	99
		第十一	节 重点试题精练及解析	00

目 录

第三章 几何(Geometry)	• 117
第一节 Plane Geometry (平面几何)	• 117
第二节 Solids Geometry(立体几何)	• 125
第三节 Coordinate Geometry(坐标几何)	• 127
第四节 重点试题精练及解析	• 130
第四章 Data Interpretation (数据解释)	• 155
第一节 数据解释的题型介绍	• 155
第二节 重点试题精练及解析	• 162
第五章 Word Problems (文字题)	• 174
第一节 Weighted Average Problems (加权平均问题)	• 174
第二节 Currency (Coin and Bill) Problems (货币问题)	• 174
第三节 Investment Problems(投资问题)	• 175
第四节 Motion Problems (运动问题)	• 176
第五节 流水行船问题	• 177
第六节 Work Problems (工作问题)	• 178
第七节 "牛吃草"问题	• 178
第八节 Mixture Problems(混和物问题)	• 179
第九节 鸽巢原理(抽屉原则)	• 180
第十节 Age Problems (年龄问题)	• 181
第十一节 Problems Involving Overlapping Sets (集合问题)	• 181
第十二节 重点试题精练及解析	• 182
第三篇 GMAT 数学思维训练 150 题	• 224
第四篇 最新 GMAT 数学机考模拟 150 题	• 236
附示录	
附录一 GMAT 常用数学术语汇编	• 259
附录二 GMAT 常用数学符号及其英文表达	• 265
附录三 GMAT 常用数学公式	· 268

附录四 Measurements ······ 269

第一篇

GMAT 数学总论

管理研究生录取测试(The Graduate Management Admission Test, 简写为 GMAT)是管理研究生院用来评估申请者的入学资格,并预测入学后第一年表现的一种测试。该测试是一个用英语出题的标准化考试,整个考试由三部分组成,其主要形式如下表所示。

Format of the GMAT			
	Questions	Timing	
Analytical Writing			
Analysis of an Issue	1	30 min.	
Analysis of an Argument	1	30 min.	
Optional break		5 min .	
Quantitative Problem Solving Data Sufficiency	37	75 min.	
Optional break		5 min.	
Verbal Reading Comprehension Critical Reasoning Sentence Correction	41	75 min.	
Total Time:			

由于 GMAT 针对的是 MBA 的申请者,而这些申请者又来自不同的专业和领域,所以参加 GMAT 测试并不需要特定的管理知识,也不需要特定领域的成就。就 GMAT 数学来讲,与很多 考生熟悉的"纯数学"考试不同,GMAT 数学部分强调数学在日常生活中的运用。考生需要综 合代数、几何、排列和概率等方面的知识,将实际问题转化为数学问题,去解决实际问题。 GMAT 数学部分有两种题型:Problem Solving (问题求解型)和 Data Sufficiency(数据充分型), 这两种类型都采用多项选择法命题,但形式和要求不同。GMAT 计算机考试要求考生在 75 分钟 内完成 37 道题,其中 Problem Solving 大约有 21~22 道,Data Sufficiency 大约有 16~17 道。在 这 37 道题中又有 10 道题是"试验型"题目,这一部分题目是为将来的考试设计的,所以在本次 考试中不计分。然而在考试中你是没有办法来区分哪些是计分的题目,哪些是"试验型"的题 目,所以你必须认真完成每一道考题。考生在参加考试时,计算机并不是一次性把所有题目全部 给出,考试中心公布的出题方针是:

Give you questions that are neither too easy nor too hard for you. When you answer questions correctly, the computer tends to give you harder questions. When you answer incorrectly, it tends to give you easier questions.

同理,你的得分也不再是简单的答对一题得多少分,而是与你所做题目的难易程度密切相关,你答对的题目越多,下面的题目也就变得越难,而你的得分才可能更高。考生在考试时遇到的题型与本书中所讲的是完全一致的,但是问题出现的格式和形式不同,主要表现在以下几个方面:

(1) 在计算机的屏幕上每次只出现一道题;

(2) 多项选择题的选项前面不是字母(如 A、B、C、D 和 E)而是圆圈;

(3) Problem solving (问题求解题) 与 Data Sufficiency (数据充分题)随机出现;

(4) 你必须使用计算机来选择答案;

(5) 选择答案并确认后,你才能继续回答下一个问题;

(6) 你不能返回前面修改已经完成的问题;

(7)一般而言,前十题决定考试难度,第一题为中等难度的题目,后面每一题的难度将依赖 于前一题,每题的难度与分值不等。

很明显,由于机考所面临的不确定性增加,所以许多同学会感觉机考题难度较大。因此,良 好的心理素质将是能否成功的关键因素之一。

第一章

GMAT 数学考试的目的及内容

在 GMAT 数学考试中, Problem Solving 和 Data Sufficiency 两类题目所考查的内容是一样的, 主要是算术、初等代数和一些众所周知的基本几何概念,其具体的考查目的和内容如下所述:

一、GMAT 数学考试的目的

GMAT 数学考试,主要测试考生以下的能力:

1. Proficiency in arithmetical operations(精通算术运算)

2. Proficiency in solving algebraic equations(精通代数方程的求解)

3. Ability to convert verbal information to mathematical terms(具有把文字信息转变成数学术语的能力)

4. Ability to visualize geometric shapes and numerical relationships(具有构想几何图形以及数字间的相互关系的能力)

5. Ability to devise intuitive and unconventional solutions to conventional mathematics problems(具有用直觉的和非常规的方法去解决一般数学问题的能力)

- 二、GMAT 数学考试的内容
 - 1. Arithmetic (算术)
 - 算术部分主要是小学数学的内容,还有一些题涉及集合、概率及描述统计等方面的内容。
 - (1) Properties of Integers(整数的性质)
 - (2) Fractions(分数)
 - (3) Decimals(小数)
 - (4) Real Number(实数)
 - (5) Ratio and Proportion(比率和比例)
 - (6) Percents(百分比)
 - (7) Powers and Roots of Numbers(幂和指数)
 - (8) Descriptive Statistics(描述统计)
 - (9) Sets(集合)
 - (10) Counting Methods(计算方法)
 - (11) Discrete Probability(独立事件的概率)
 - 2. Algebra(代数)
 - 代数部分一般不超出高中一年级数学书中的内容, 主要内容如下:
 - (1) Exponents(指数)
 - (2) Simplifying Algebraic Expressions(化简代数表达式)
 - (3) Equations(方程)
 - (4) Solving Linear Equations with One Unknown(求解一元线性方程)
 - (5) Solving Two Linear Equations with Two Unknowns(求解两元线性方程)
 - (6) Solving Equations by Factoring(用因式分解法解方程)
 - (7) Solving Quadratic Equations(求解二次方程)
 - (8) Inequalities(不等式)
 - (9) Absolute Value(绝对值)
 - (10) Functions(函数)
 - 3. Geometry(几何)

几何部分主要考查考生对几何尺寸的理解,要求考生具有构想几何图形及其与数字间的相互 关系的能力。在几何课中出现的大量定理以及对某个命题的证明在 GMAT 数学考试中不做要求。

- (1) Lines(直线)
- (2) Intersecting Lines and Angles(相交直线和角)
- (3) Perpendicular Lines(垂线)
- (4) Parallel Lines(平行线)
- (5) Polygons (convex)(凸多边形)
- (6) Triangles(三角形)
- (7) Quadrilaterals(四边形)
- (8) Circles(圆)
- (9) Rectangular Solids and Cylinders(长方体和圆柱)
- (10) Coordinate Geometry(坐标几何)

4. Word Problems(文字题)

以上所提及的数学原理都可用于解文字题,下面列出了 GMAT 数学考试中文字题所考查的 主要方面。

- (1) Rate Problems(比率问题)
- (2) Work Problems(工作问题)
- (3) Mixture Problems(混合物问题)
- (4) Interest Problems(利息问题)
- (5) Discount(折扣)
- (6) Profit(利润)
- (7) Sets(集合)
- (8) Geometry Problems(几何问题)
- (9) Measurement Problems(测量方法)
- (10) Data interpretation(数据解释)

三、GMAT 考试的假想与真相

真相:未答完 GMAT 考题的考生会受到严重的处罚。

如果有一道题你一时想不起来怎么做,这时用本书所讲的技巧 猜一下答案,然后接着做下一题。如果你猜错了,计算机程序很可 能会给你出一道相对简单一点的题目,并且你也容易答对,计算机 很快会根据你的能力出一些难度适中的题目给你做。如果你未能完 成考试,你将会被扣掉很多分。比如,若一个考生有5道 Verbal 题 未答,一个人的百分位数(percentile)就会从第91 降到第77,所以 考试时做题的进度很重要。

真相:极少数的人得到了非常高的分数。

在每年200,000的 GMAT 考生中,获取满分 800 分的人不足 50 个。除非你非常有实力,否则你获得满分的可能性不大。并且, GMAT 考试成绩只是你申请材料的一部分。录取委员会在决定是否 录取某个人时,除 GMAT 成绩外,还会综合考虑诸如大学期间的 成绩、面试情况、推荐信等其他各方面的信息。

第二章

中国考生在 GMAT 数学考试中的常见错误

GMAT 数学考题的内容大体上不超出中国高中所学的内容,因此 GMAT 的数学考试对大多数过五关斩六将、历经高考磨难的中国大学生构不成太大的挑战,但这并不是说大多数中国考生都能在考试中取得优异的成绩。因为 GMAT 考试毕竟不能等同于我国的小学和中学数学考试,其中充满了大量的数学专业词汇、以及少量的某些中国大学生相对较生疏的统计和概率方面的内容。要想在 GMAT 数学方面拿高分甚至满分,就必须克服这些障碍。下面把中国考生在 GMAT 数学考试中易犯的错误总结一下,希望能对考生有所帮助。

1. 英文理解能力较差:对英语句型(尤其是两个事物相比较时)理解不清。由于题目本身是 用英文叙述,若阅读能力欠佳,则无法掌握问题的核心所在,即使数学能力很强,也无法创造 佳绩。例如在数学题中经常出现的 the ratio of A to B 表示 A: B,但若考生理解成 B: A,那就 肯定不能把题解对; There is twice as much A as B 的意思与 A is twice as much as B 的意思完全 一样,即都是 A=2B,而不是 B=2A;又如 more (less) than..., as twice as ...,或者 decrease to,decrease by等词语都是比较容易理解错的。对于这些题,一定要分清句子结构,弄 清比较的两个主体或是变化前后的数量。在平时做题时要多留心。对于这种题应认真地多研读 几遍。

换句话说,知道每一个词表达的数学含意是正确解答数学问题的关键所在。在 GMAT 的数 学考试中有许多不同的单词却表达相同的数学含意(如下表),这些词通常给出了数量与运算之间 的关系,所以熟悉这些词所表达的数学含意是至关重要的。在此,笔者强烈建议读者熟记下面表 格中的内容。

Equality is				
	is equal to	s equal to		
	is the same as			
	the result is			
	yields			
	gives			
Inequalities	A is greater than B	A≽B		
	A is greater than or equal to B	A>B		
	A is less than B	A <b< td=""></b<>		
	A is less than or equal to B	A≪B		

Addition	the sum of A and B
(A+B)	the total of A and B
	A added to B
	A increased by B
	A more than B
	A greater than B
Subtraction	A minus B
(A-B)	A less B
	the difference of A and B
	from A subtract B
	A take away B
	A decreased by B
	A diminished by B
	B is subtracted from A
	B less than A
Multiplication	A multiplied by B
$(A \times B)$	the product of A and B
Division	A divided by B
(A÷B)	the quotient of A and B
Factors and Divisors	A and B are factors of C
$(A \times B = C)$	A and B are divisors of C
	C is divisible by A and by B
	C is a multiple of A and of B

2. 对数学术语不熟悉:一些比较生僻的数学术语是考生做题的巨大障碍,例如 progression, binomial, denominator, complementary angle 等,若考生对这些词语的意思把握不到位,会导致 对整个题目的理解出现偏差。对于这种情况,一方面要在平时尽可能地多熟悉数学术语,另一方 面要在做题时多回忆以前的数学知识,结合词根来猜出该数学术语的意思。

3. 主观假设: 我国考生经常犯的一个错误是主观臆断,除了题目所提供的信息和一些永恒不 变的事实,额外做一些假设,如下所示:

例 1: How many minutes long is time period M?

- (1) Time period M is 4 hours-long.
- (2) Time period M starts at 9 a.m.

时间段 M 有多少分钟?

- (1) 时间段 M 为 4 小时。
- (2) 时间段 M 从上午 9 点至下午 1 点。
- 解:(1)显然可以回答问题;(2)是否可以

and ends at 1 p.m.

- A. Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient to answer the question asked;
- B. Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient to answer the question asked;
- C. BOTH statement (1) and (2) TO-GETHER are sufficient to answer the question asked;
- D. EACH statement ALONE is sufficient to answer the question;
- E. Statement (1) and (2) TOGETHER are NOT sufficient to answer the question asked, and additional data specific to the problem are needed.

回答问题呢?不一定,因为不知道开始和结束 是否在同一天。所以(A)是正确答案。

错误分析:很多考生主观上假设"开始和结束是在同一天",因此选择了选项(D)。 考生只应该根据题目所提供的信息以及一些 永恒不变的事实(如每天 24 小时,每小时有 60 分钟等)进行解答。切勿主观臆断,做一 些额外的假设。

4. 逻辑错误: GMAT 数学考试也很注重测试考生的逻辑思维能力。我国考生具有一个共同 的特点,那就是计算能力相对较强,而逻辑思维能力较弱,这造成我国考生在 Data Sufficiency 题的得分比较低。比如:若一个一次方程组有两个未知数和两个方程,那么这个方程组就一定能 够求解吗? 很多考生会毫不犹豫地回答"是"。正是这种错误的逻辑导致了我国很多考生在 GMAT 数学中不能获得高分。我们知道,二元一次方程组能否求解,取决于两个方程是否相互 独立。如果两个方程不相互独立(成比例或者说是等效),这个方程组就无法求解。一个方程有两 个未知数,如果加上其他限制条件(如未知数必须是整数等),方程也有可能可以求解。

5. 缺乏技巧,反应太慢:要在 75 分钟之内答完 37 道题,每题停留的时间平均也就是两分钟。有些题目虽然不难,但特别繁长,有时甚至要花两分多钟才能把题目看清楚,而且有些题目 很耗时间,演算过程也很冗长,所以做题速度必须得快,还要讲究解题技巧,才能在短短的时间 内做完。

6. 忽略数量换算:注意一些题所给的数量的单位和最后所问的数量的单位不同,一定要注意 答题前将其进行转换,有时需要多留心题后给的括号,因为在某些情况下,括号内的内容在选择 时会用得上。常见的转换包括时间的转换(如1hour=60 minutes=3 600 seconds)、距离的转换 (如1 kilometer=1000 meters)、以及货币的转换(如\$ 1=100 cents)。一般情况下,单位的转换出 现在 Problem Solving 中,但有时也出现在 Data Sufficiency 题中。对于 Problem Solving 题,如 果题目中出现不同单位,一般会在答案中体现,如对时间的转换(分子或分母会有 60,因为时间 的进制是 60)等。不同单位的转换也可以作为排除法的一个依据。例如只有相同单位才可以相互 加减,所以 x小时加上 y分钟是 $x + \frac{v}{60}$ 小时,而不是 x + y小时。

例 2: A machine costs *x* dollars per day to 某台机器每天花费*x* 美元来维持运行,并 maintain and *y* cents for each unit it produces. 且每生产一件产品需要耗费 *y*美分的成本。若

If the machine is operated 7 days a week and produces n units in a week, which of the following is the total cost, in dollars, of operating the machine for a week?

- (A) 7x + 100 yn(B) 7x + yn
- (C) (700 x + yn)/100
- (D) (7x+100yn)/100
- (E) 700*xyn*

该机器一周工作 7 天并且每周生产 n 件产品, 那么该机器运行一周总共需要耗资多少美元?

解析:根据题意可知,该机器运行一周所 需的费用可由下面算式得出:

(700 x + yn)/100

所以(C)是正确答案。

错误分析:本题涉及到美元和美分的单位 转换。很多粗心的考生忽略了这一点,不假思 索地选择了(B)选项。有的考生注意到了美元 与美分的区别,却错误地选择了(A)。

7. 读题的遗漏: 在匆忙中易把数量的单位或其他重要的信息丢掉,常见的有百分数(percent) 与小数,米与厘米等。

8. 计算失误:常见的计算失误是一些考生把简单问题复杂化,结果既浪费了时间又做错了题。还有一些考生没有计算或者粗略地计算了一下,便草率地做出了决定。通常情况下,这类错误在 Problem Solving 题中比较容易出现,但有时也出现在 Data Sufficiency 题中。许多考生对 Data Sufficiency 类的题有错误的认识,认为这类题不需要解出精确的答案,但有些题确实是只有 在精确求解的情况下才能得出正确答案。

9. 考点的遗忘:由于一些数学知识点学过得早,许多考生尤其是参加工作时间较长的考生可能已经遗忘。只要考生在考前把本书所列举的考点加以复习,并把所附难题做一遍,考试时就不会再有问题。

第三章

GMAT 数学两大题型及其解题策略

GMAT 的数学部分有两大题型: Problem Solving(问题求解题)和 Data Sufficiency(数据充分题),这两大题型均采用多项选择的形式,旨在测试考生对数字的运用能力,包括算术、代数和几何的基本法则应用题。这些题目既可能是文字题,也可能要求直接演算。此外,还可能包括图表题,即所谓的数据解释题。

第一节 Problem Solving (问题求解题)

一、Problem Solving 题型介绍

Problem Solving 主要测试考生以下四方面的能力:

- basic mathematical skills(基本数学技巧)
- understanding of elementary mathematical concepts(理解基本的数学概念)
- the ability to reason quantitatively and solve quantitative problems(数量推理和解决数量问题的能力)
- interpret graphic data(解释图表数据)

下面是这类题型的"Directions":

Solve the problem and indicate the best of the answer choices given.

Numbers: All numbers used are real numbers.

Figures: A figure accompanying a problem solving question is intended to provide information useful in solving the problem. Figures are drawn as accurately as possible EXCEPT when it is stated in a specific problem that the figure is not drawn to scale. Straight lines may sometimes appear jagged. All figures lie in a plane unless otherwise indicated.

上面的 Direction 说明了以下几点:

•题目所有用到的数都是实数。

• 所有伴随 Problem Solving 问题的图形都是为了给解题提供有用的信息。除非题目中指出 该图形不是按比例画出的,否则所有图形都将尽可能地按比例画出;题目中若无专门指出,图形 都假设在同一个平面内。

 所有显示为直线的线均可当作直线来处理(在机试中,因为电脑显示器的原因,直线可能 会看起来呈"锯齿状")。

• 除非题目中专门指出,否则所有图形都可假定在同一个平面内。

In the figure above, PQRS is a square and each of the four circles has a radius of *r*. What fractional part of the area of the square is shaded?

(A)
$$\frac{\pi - 4}{2}$$
 (B) $\frac{4 - \pi}{4}$ (C) $\frac{\pi}{4}$
(D) $\frac{4}{\pi}$ (E) π

例 2: A music director has a group of five female vocalists and another group of five male vocalists. From the group of female vocalists she will select three persons to form a trio, and from the group of male vocalists she will select two persons to form a duo. What is the difference between the number of different trios she could choose and the number of different duos she could choose?

(A) 0	(B) 1	(C) 6
(D) 10	(E) 20	

在上面的图形中, PQRS 是一个正方形, 四个圆中每一个圆的半径都等于 *r*。阴影部分的面积占整个正方形面积的比例是多少?

解:本题的正确答案为(B)。这是一个非 常典型的"阴影面积"问题。阴影部分的面积 将等于整个正方形的面积减去四个圆的面积:

Shaded Area = $\Box - (4 \times \bigcirc)$

我们最终要求解的是:

(1) $\frac{Shaded Area}{Square}$

假设每一个圆的半径都等于 r,正方形的边 长必为 4r,则每个圆的面积为 $4\pi r^2$,正方形的 面积等于 $4r \times 4r = 16r^2$,所以阴影部分的面积 等于:

Shaded Area=16 r²-4\pi r²
代入(1)式可得:
$$\frac{Shaded Area}{Square} = \frac{16r^2 - 4\pi r^2}{16r^2} = \frac{4-\pi}{4}$$

一乐队导演有五个女歌手和五个男歌手。 她要从女歌手中选出三个组成一个三重奏乐 队,从男歌手中选出两个组成一个二重奏乐 队。问她可以选择的不同三重奏乐队数与不同 两重奏乐队数的差值是多少?

解:本题的正确答案为(A)。此题也就是 让求5中选3和5中选2的不同选法,因此要 用到组合(combination)方面的知识。我们知 道从5人中任取3人的不同选法就是 C_5^c ,从5 个人中任取2人的不同选法是 C_5^c ,因此两者的 差值为 $C_5^c - C_5^c = \frac{5!}{(5-3)! \times 3!} - \frac{5!}{(5-2)! \times 2!} = 0$

二、Problem Solving 的解题策略

问题求解题的正确答案与错误答案往往极易混淆,出题人通常把错误选项设置成与正确选项 非常相似的形式,因此这些错误选项具有很强的干扰性,考生在解这类题时一不小心就会掉入出 题人设置的"陷阱"中去。下面是广大考生与笔者多次参加 GMAT 考试的心得体会,希望能对 参加 GMAT 考试的同学有所帮助。

1. 先略读题目再做解答,答题时应适可而止。

有些考生喜欢一边看题目,一边就开始列方程计算。这是很不明智的,因为有时题目的要求 可能与自已做的结果并不一致。正确的方法是先把整个题目略读一遍,在答题之前先浏览一下 5

11

个选项,这对我们正确选择答题方式有很大的帮助。通常答案会以不同的形式给出,如小数形 式,分数形式等,或以不同的单位给出,如分、秒等。演算时要留心以正确的形式给出答案,抓 住问题的关键所在之后再做解答,以免把时间花费在不必要的计算上。

 冗长的题目不可轻易放过,开始解题时,要先把题目内容变成数学公式或代数式;沉着 应对定义运算考题。

有些应用题比较冗长,看起来好像很烦,但事实上这类题多半也仅仅是烦在看题上,并不需要太多的计算。一般只要根据题目中的描述,列出算术表达式,答案就出来了。因此遇到这类题目一定不要无所适从,而要沉着应战。

试题中有时会出现 ETS 自创的定义或符号,考生不要因为自己从未见过就以为自己不会而轻易放过去。对这类题目只要根据题目的定义或公式把数据代入,通常都比较容易得分。

例 3: A sequence of operations $\{A_1, A_2, ..., A_n\}$ is defined as follows $A_1(x) = x$, $A_2(x) = 2x^2$, ... $A_n(x) = nx^n$. If A_2 is performed on x, and then A_1 is performed on the result, what is the final result?

(A) $4x^4$ (B) $8x^4$ (C) $64x^4$ (D) $64x^8$ (E) $4x^8$ 解:本题的正确答案为(D)。不能正确解答 本题的考生大多数都是不能正确理解"If A₂ is performed on x"这句话。这句话的主要意思是 把 A₂ 的 值 当 $x \approx i j$, 即 以 $2x^2 \approx k$ 代 A₁(x)=x中的 x,因此有:

$$A_{n}(x) = n x^{n} \Rightarrow A_{n}(A_{2}(x)) = n(A_{2}(x))^{n}$$
$$= n(2x^{2})^{n} = 2^{n} n x^{2n}$$
$$A_{4}(A_{2}(x)) = 2^{4} \times 4 \times x^{2 \times 4} = 64x^{8}$$

3. 对难度较大,关系复杂的题不要轻易放过,要认真读题,看清条件。

认真看题,从题目所给出的已知条件中,判断出哪些是有用的条件,哪些是干扰条件,哪些是 要求的未知量,并找出已知条件与未知量之间的关系。这也就是所谓的著名的"Holme"法则:

(1) What is the question to be answered?

(2) What information have I been given?

(3) How can I bridge the gap between (1) and (2)?

(4) Execute the needed operations.

考生应注意到 "Holme" 法则并不一开始就进行运算, 而是先寻找解决问题的方法, 下面就 是一个如何运用 "Holme" 法则的例子:

例 4: If the senior class has 360 students, of whom $\frac{5}{12}$ are women, and the junior class has 350 students, of whom $\frac{4}{7}$ are women, how many more women are there in the junior class than in the senior class?

(A)
$$(350-360)\left(\frac{4}{7}-\frac{5}{12}\right)$$

(B) $\frac{(350-360)\left(\frac{4}{7}-\frac{5}{12}\right)}{2}$

解:下面是解这道题的步骤:

What is the question to be answered?
 大学三年级学生中的女生比大学四年级学

生中的女生多多少人?

根据 Holmes 法则, 可写出下式:

women juniors-women seniors

(2) What information am I given?

题目中给出的已知条件是:大学三年级和 大学四年级学生各自的总人数及女生在各个班 中所占的比例;

(C)
$$\left(\frac{4}{7} \times \frac{5}{12}\right) (360 - 350)$$

(D) $\left(\frac{4}{7} \times 350\right) - \left(\frac{5}{12 \times 360}\right)$
(E) $\left(\frac{5}{12} \times 360\right) - \left(\frac{4}{7} \times 350\right)$

(3) How can I bridge the gap?

把女生所占总人数的比例与总人数相乘,可把步骤(1)两个班级中女生人数表达出来:women juniors= $\frac{5}{12} \times 360$

women seniors = $\frac{4}{7} \times 350$

(4) Execute. 由以上分析可知,本题的答

案为
$$\left(\frac{5}{12} \times 360\right) - \left(\frac{4}{7} \times 350\right)$$
。
所以,本题的正确答案是(E)。

4. 注意单位换算,用题目中要求的单位答题,且忌答非所问。

例 5: A certain copy machine produces 13 copies every 10 seconds. If the machine operates without interruption, how many copies would it produce in an hour?

- (A) 78
- (B) 468
- (C) 1,800
- (D) 2,808
- (E) 4,680

5. 避免繁琐的和不必要的计算,必要时可采用近似算法。

例 6: Jack is standing 30 yards due north of point P. Sue is standing 72 yards due west of point P. What is the shortest distance between Jack and Sue?

- (A) 60 yards
- (B) 78 yards
- (C) 90 yards
- (D) 100 yards
- (E) 102 yards

解:本题的正确答案为(E)。设此复印机 每小时复印的张数为 x,根据它在单位时间内 完成的张数一定可列出下面的比例式:

$$\frac{13}{10} = \frac{x}{3600} \Rightarrow x = 4,680$$

若考生按每分钟计算则会得到错误的答案:

$$\frac{13}{10} = \frac{x}{60} \Rightarrow x = 78$$

解:本题的正确答案为(B)。Jack 与 Sue 分别站在 P点的正北和正西方,因此 J、S和 P构成一直角三角形:

若用常规方法直接用勾股定理可得:

 $JS = \sqrt{JP^2 + SP^2} = \sqrt{30^2 + 72^2} = 78$

若考生对 30 和 72 这两个数稍加分析就会 发现 30=6×5,72=6×12,而 5,12 和 13 是 一组勾股数,所以可得 IS=6×13=78。 例 7: Of the following which best approx-

6. 巧妙运用代入法,有时可用排除法。

有些 GMAT 数学题不好直接求解,有些甚至无法直接求解,考生在遇到这类题时,一般可采用代入法。常用的代入法有三种:

(1) 以简单的数值取代变量,可以省去运算。

(2) 挑选可能的答案代入验算。

把选项中的数值或变量代入验算,可以快速求解,避免冗长的计算过程。

(3) 有时使用排除法。

有些选项一看就知不正确,做题时可先将这些选项排除掉,再从其他的几个选项中选一 个。在时间紧迫的情况下,即使用猜的方法也比较容易猜中。

例 8: A haberdasher(男子服饰经销商) sells neckties for \$7 each and shirts for \$12 each. If he sells \$95 worth of ties and shorts, what is the least amount of ties he could have sold? 解:领带与衬衫的数目必为整数。如果男子服饰经销商(haberdasher)卖了3条领带(\$21),则剩下\$74,无法被12整除。如果他卖了4条领带(\$28),则剩下\$67,亦不能被12整除。如果他卖了5条领带(\$35),剩下\$60,可被12整除。所以(C)为正确选项。

解:本题的正确答案为(D)。本题主要是

- (A) 3
- (B) 4
- (C) 5
- (D) 6
- (E) 7

(4)使用代入法时,应从选项(C)开始。可以使用代入法的题的选项通常是由简单的数字组成的,并且这些数字按从小到大的顺序排列。把(C)选项的值代入后,若发现(C)选项的值小,那么就可排除(A)和(B),接下来分别把(D)和(E)的值代入,就一定可得到正确答案;同理,若(C)的值代入后发现偏大,那么正确答案一定在(A)和(B)之间。通过这种技巧来使用代入法,可节省考生大量的宝贵时间。如上面例 8 中,直接把(C)选项的值代入,你会发现(C)就是本题的正确答案。

注:当假设一个变数时,要避免用0或1,因为0乘任何数都等于0,1乘任何数都不会改变 其值。假如一个试题中有多于一个的未知量,要为每一个未知量赋一个互不相同的值。

7. 根据题目特点,尽量选用最直接,最简单的方法来解题。有时考生可以根据图形,通过 逻辑推理的方法来快速解题。 例 9:

In the figure above, the circle with center O has area 4π . What is the area of square ABCD?

- (A) 4
- (B) 2π
- (C) 12
- (D) 16
- (E) 8π

在上面图形中,以 O 为圆心的圆的面积 是 4π,正方形 ABCD 的面积是多少?

解:这道题常规的解法是先根据圆的面积 公式,把圆的半径求出来,接下来再根据正方 形和圆的相互关系把正方形的边长求出来,最 后再用正方形的面积公式求出正方形 ABCD 的面积。其实,对于这道题我们不用计算,而 是用逻辑推理的方法来快速求解。从图中我们 可以看出圆内接于正方形,所以正方形的面积 一定大于圆的面积,由此我们可以可以排除 (A)、(B)和(C)三个选项;由于图形是按比例 画出的,所以我们也很容易估计出正方形的面 积肯定达不到圆的面积的两倍,由此可以排除 选项(E);由此,最后剩下的选项(D)就是本 题的正确答案。

 不要忘记变量既可以是正数也可以是负数,特别是当题目要求进行大小比较时,更要格 外注意。

比如 x=2y 一题中, x 不一定大于 y, 因为如果 y=-1 时, x=-2, 小于-1; 又如 $x^2=a$ 的根既可能是正数,也可能是负数。

9. 切勿在难题上浪费时间,但也不能知难而退,随便瞎猜,而要用思考性猜题法增加得分的概率。

若考生遇到两三分钟仍不能解出的题,就不要再浪费时间了,但也不能瞎猜。试着看一下问题后的选择项,其中必然会有一个正确答案。它们可能会给你一些解题的思路。若能否定五个选项中的一个或两个,再在剩余的几个答案中猜一个,一般猜对的几率相对较高。

第二节 Data Safficiency (数据充分题)

一、Data Sufficiency 题型介绍

数据充分题是一类特殊的数学问题,与要求给出具体答案的问题不同,这一类问题只要求你 根据给定的条件判断是否能够得出具体的答案。数据充分题是 GMAT 测试中唯一一类没有逐个 地给出五个选项的题型,而是在解题说明中统一列出了从(A)到(E)五个选项。这五个选项分别 代表五个给定的条件。根据题目提供的信息,判断具体答案。

每一个数据充分题具有相同的形式。首先,你会被问及一个没有给出足够条件以求解的问题。此类问题如"m的值是多少?","吉姆是否比保罗大?"然后给你两个描述,提供关于这个问题的补充条件。你的任务是分析这些条件并判断是否其中一个或者两个条件是你解答该问题所必须的。根据你的判断,从五个选项中挑选一个正确的。

数据充分题(Data Sufficiency)不仅要求考生具备基础的数学知识和熟练的计算技巧,而且更 注重检验考生分析定量问题的能力,即根据已给出的数据,辨认哪些数据与问题有关,确定在何 种情况下所给数据能满足问题的要求,以此来检验考生的推理和综合分析的能力。

Data Sufficiency 主要考查考生是否具有以下三方面的能力:

- to analyze a quantitative proble (分析一个数量问题)
- to recognize which information is relevant(认识哪一条信息是相关的)
- to determine at what point there is sufficient information to solve the problem(判断是否具 有足够的信息来解出问题)

GMAT考试是对于那些希望上 MBA 的考生而设立的,而 MBA 要求考生具备很强的逻辑思维能力。Data Sufficiency 题型恰好适应了这一要求。考生在做这类题目时,不仅要具备一定的数学知识,还要洞悉这类题目的指令。Data Sufficiency 部分的 Directions 如下所示:

This data sufficiency problem consists of a question and two statements, labeled (1) and (2). You must determine whether the information provided by the numbered statements is sufficient to answer the question asked. In addition to the information provided in the numbered statements, you should rely on your knowledge of mathematics and ordinary facts (such as the number of minutes in an hour or the meaning of counterclockwise), you must decide whether:

- (A) Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient to answer the question asked;
- (B) Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient to answer the question asked;
- (C) BOTH statement (1) and (2) TOGETHER are sufficient to answer the question asked;
- (D) EACH statement ALONE is sufficient to answer the question;
- (E) Statement (1) and (2) TOGETHER are NOT sufficient to answer the question asked, and additional data specific to the problem are needed.

Numbers: All numbers used are real numbers.

Figures: A figure accompanying a data sufficiency problem will conform to the information given in the question, but will not necessarily conform to the additional information given in the statements (1) and (2).

- Lines shown as straight can be assumed to be straight and lines that appear jagged can also be assumed to be straight.
- You may assume that the positions of points, angles, regions, etc., exist in the order shown and that angle measures are greater than zero.
- All figures lie in a plane unless otherwise indicated.

<u>Note</u>: In data sufficiency problems that ask for the value of a quantity, the data given in the statements are sufficient only when it is possible to determine exactly one numerical value for the quantity.

数据充分型考题主要考查考生的分析判断能力。与问题求解型的考题一样,这部分要求掌握 有关的算术、代数和几何的基础知识。每一道题包括一个问题和两个有关的说明。考生必须根据 两个说明性语句中所给出的信息以及自己的数学知识和日常生活常识做出判断:

(A):条件(1)单独就能充分回答问题,且条件(2)单独不能充分回答问题;

(B):条件(2)单独能够充分回答问题,且条件(1)单独不能够充分回答问题;

(C):条件(1)和条件(2)相结合才能充分回答问题;

16

(D):条件(1)和条件(2)每一个都能够充分回答问题;

(E):条件(1)和条件(2)相结合也不能充分回答问题,要回答该问题,还需要附加的额外信息。

有关 Numbers 和 Figures 的内容与 Problem Solving 的内容相仿,在这里不再赘述。考生需要注意的是伴随 Data Sufficiency 问题的图形遵从问题中所给出的信息,但并不一定遵从条件(1)和条件(2)中所给出的附加信息;另外一点考生需要注意的是,在问某一个量的值时,仅当条件中所给出的信息能确定该量的值是惟一时,此条件才是回答该问题的充分条件。

例 10:

In $\triangle RST$, what is the value of α ?

(1) RS = RT

(2) $\beta = 50^{\circ}$

解:本题的正确答案为(C)。根据条件 (1),RS=RT可知△RST是等腰三角形,且 $\alpha=\gamma$ 。再根据 $\alpha+\beta+\gamma=180$,可得 $\beta+2\alpha=$ 180。因为条件(1)并未给出 β的值,所以无法 根据条件(1)求出 α 的值;根据条件(2)可知 $\alpha+\gamma=130$,但因为不知道 γ 的值,所以 α 的 值也无法得知,因此(2)单独也是不充分的; 同时使用条件(1)和条件(2)可得 $2\alpha=130$,从 而可求出 $\alpha=65^{\circ}$ 。由以上分析可知(1)和(2)中 的每一个单独都是不充分的,只有(1)+(2)是 充分的。

二、Data Sufficiency 的解题策略

在解数据充分性的题目时,应注意以下几点:

1. 明确解题要求,不要做不需要做的,特别是不要浪费时间去求解方程

在解 Data Sufficiency 题时,考生要注意的是不要浪费时间去为问题寻找答案,而应该去决定给出的信息是否能充分地回答题目所提出的问题。一旦考生能确定地从条件语句中找出题目问题的答案,问题就解决了。先分别考虑条件(1)和条件(2),并注意在考虑(2)时先不管(1)中的信息,当条件(1)和条件(2)都不行时,再结合起来考虑。

在数据充分型的试题中,有些题目是列方程求未知数的题目。对于这类题目考生只要能根据 已知条件,判断出方程解的个数即可把题做对。因此,对数据充分型考题中的方程题,千万不要 像对 Problem Solving 中的方程题一样,花很多时间去列方程、解方程。很多情况下,只要估计 一下独立方程的个数是否与未知数的个数一致,如果两者一致,一般是充分的(个别例外)。

例 11: What is Steve's annual salary and Maria's annual salary?

(1) The combined total of the annual salaries of Steve and Maria is \$80,000.

(2) If Steve were to receive a 10 percent increase in annual salary and Maria an 8 percent increase, their combined annual salaries would be \$87,000.

解:本题的正确答案为(C)。设 Steve 和 Maria 的年薪分别为 S和 M,则根据(1)只能 列出一个方程:S+M=80,000(不必写出), 一个方程无法解出两个未知数,所以(1)不充 分;根据(2)也只能列出一个方程:1.1S+ 1.08M=87,000,所以(2)也不充分;(1)和 (2)相结合成二元一次方程组,从而可求出 S 和 M 的值(不必去具体计算)。 特别提醒:

① 有时条件(1)和条件(2)所表示的方程并不相互独立,而是相互包含,或者说是同等的, 在这种情况下条件(1)+条件(2)也是不充分的。如例 11 中,若把条件(2)改为"如果 Steve 和 Maria 的年薪都增加 10%,那么他们的年薪加起来是 88,000 美元",则例 11 的正确答案就是(E) 选项,因为条件(1)和(2)表示的方程是同等的。

② 当对未知数有一些特殊约束条件,或所求的值不是单个未知数的值,而是求比值等情形,即使方程个数小于未知数个数,也能充分回答问题,如下所示:

例 12: If m and n are positive integers, what is the value of n?

(1) The ratio of m to n is 14 : 25.

(2) 25 m+26 n=1,000

解:本题的正确答案为(B)。由(1)可得 m : n = 14:25, n 的值不惟一,所以(1)不充 分; 由(2)可得: $m = 40 - \frac{26n}{25}$,虽然只有一个 方程,但因 $m \approx n$ 都是正整数,所以 n只能 取 25,也就是说 n 的值惟一,因此(2)充分。

再如下面这个例子:

例 13: What is the value of $\frac{1}{a} + \frac{1}{b} + \frac{1}{c}$?

(1) abc=24

(2) ab+bc+ca=26

解:本题的正确答案为(C)。

 $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{ab + bc + ca}{abc}, \quad \text{虽然有 } a, b,$ c 三个未知数, 但要求的比值只要知道分子和 分母的值就充分, 所以(1)和(2)单独都是不充 分的, 而(1)+(2)却是充分的。

2. 采用系统的分析方法解题

系统的分析方法在解 Data Sufficiency 题时非常有用,通过回答三个问题,考生就可以做出 正确的选择。此外,若考生能回答三个问题中的任何一个,便可以否定一个选项,这时再进行猜 题,准确率也比较高。

采用系统的分析方法,要回答以下三个问题:

(1) 第一个条件能否单独充分地回答题目中所提出的问题?

(2) 第二个条件能否单独充分地回答题目中所提出的问题?

(3) 两个条件加在一起能否充分地回答题目中所提出的问题?

一般应按着上面所说的(1)、(2)和(3)的顺序进行解题,下面是采用系统分析方法的流程图: 使用系统分析法时应从流程图的顶部开始回答"YES"或"NO",然后下移,直至得到正确 答案。有许多问题不需逐一回答三个问题便能做出正确的选择。例如:如果问题(1)的回答是 "YES",而问题(2)的回答是"NO",那么正确的选择便是(A)。

3. "NO"也是对题目所提出问题的一种充分的回答

Data Sufficiency 主要考查的是选项是否能够回答问题。有许多考生对 "sufficient answer to the question"这个概念理解不清,认为只有当条件对问题的回答是 "YES"时,这个条件才有可能是充分的。实际上如果条件中有足够的信息表明问题的答案是 "否",那么该条件也是能够回答该问题的充分条件。请考生认真体会下面这个例子。

- 例 14: Is *m* an even integer? (1) *m*=3*a*, for some integer *a*.
- (2) m=2b+1, for some integer b.

解:本题的正确答案为(B)。(1)不充分, 因为当a=1时,m=3为奇数,而当a=2时,m=6为偶数;(2)是充分的,因为它表明 无论b取何整数时,m都是奇数,条件(2)从 而充分地说明了m不是一个偶数,所以(B)是 正确选项。

4. 答案惟一原则:关于"…的值是多少?"问题

在 GMAT 测试中,超过一半的数据充分题提问你是否能确定某个量的数值。GMAT 官方的 Directions 关于值的惟一性是这么描述的: In Data Sufficiency problems that ask for the value of a quantity, the data given in the statements are sufficient only when it is possible to determine exactly one numerical value for the quantity. 也就是说对于这一类问题,仅在可以惟一给出单个数 值时,这一个条件(或者条件的组合)才是充分的。可以确定两个值或者一个取值范围的条件总是 不充分的。

例 15 : Wha	at is	the	value	of	x?
------------	-------	-----	-------	----	----

- (1) 3x = 15
- (2) 5x < 30

解:本题的正确答案为(A)。因为条件(1) 告诉我们 x值等于5,所以条件(1)是充分的; 条件(2)告诉我们 x是小于6的任意数,所以 条件(2)是不充分的。 例 16: Tom and Jack are in a line to purchase tickets. How many people are in the line?

(1) There are 20 people behind Tom and20 people in front of Jack.

(2) There are 5 people between Tom and Jack.

汤姆和杰克在排队买票,问该队列中有多 少人?

(1) 有 20 个人在汤姆的后面且有 20 个人 在杰克的前面。

(2) 汤姆和埃迪之间有5个人。

解:本题的正确答案为(E)。由(1)无法得 到该队列的人数,因为不知道汤姆和杰克之间 有多少人;由(2)也无法回答上面的问题;(1) +(2)同样无法回答上面的问题,因为不知道 汤姆和杰克谁在前面,若汤姆在前面,则该队 列有 20+20-5=35 人,若杰克在前面,则该 队列有 20+20+2+5=47 人。

例 17: What is the value of of x ?	解:本题的正确答案为(C)。由于不知道
(1) $x + y = 8$	y的值,故无法确定 x 的数值,因此条件(1)
(2) $x - y = 2$	是不充分的。基于同样的原因,条件(2)也是
	不充分的。但是,当我们把条件(1)和条件(2)
	结合起来考虑时,就会得到一个联立的方程
	式,可以从中求得 x。

典型的情况是,当每一个条件直接或者间接地给出信息,你可以根据这些信息,列出含有两 个未知数的方程式时,答案可能像上面例 15 一样是(C)。但是,需要留神类似下面例子的情况。

例 18: What is the value of x ?	解:本题的正确答案为(E)。由于不知道
(1) $x - y = 6$	y的值,故无法确定 x 的数值,条件(1)是不
(2) $5x - 5y = 30$	充分的。同样的原因,条件(2)也是不充分的。
	由于条件(1)和条件(2)是同一个等式的不同形
	式,当我们将条件(1)和条件(2)结合起来考虑
	时,仍然不能确定 x的值。
例 19: What is the value of $2x-5y$?	解:本题的正确答案为(B)。由于不知道 y
(1) $x + y = 8$	的值, 故无法确定 x 的数值, 所以条件(1)是不
(2) $8x - 20y = 8$	充分的。条件(2)其实是充分的,因为如果等式
	两边同时除以4,我们就会得到 $2x-5y=2$ 。

5. 条件独立性原则: 注意在开始时将条件隔离

解 Date Sufficiency 题目的步骤是首先独立考虑两个条件。当分析条件(1)时,确信不要去读 条件(2)。同样,当分析条件(2)时,确信忘记条件(1)。如果一个条件已经能够独立回答问题, 而另外一个条件不能,就绝对没有必要再把这两个条件联合起来求解。只有判断出两个条件中的 任意一个都不充分时,才将它们结合在一起考虑。许多考生在考虑条件(2)时,潜意识中已经将 20 例 20: Is x equal to 1?

(1) $x^2 = 1$

(2) $x^2 - x - 2 = 0$

解:题目中问 *x*=1吗?

有些同学可能会这么解答:既然(1)中x等于±1;(2)中x等于2或-1,那么可以求 得x=-1,既然问x是否等于1,显然不等 于,于是选择(C)。表面上看来这么做是正 确的,实际上是有问题的。因为解Data sufficiency题目的步骤是首先独立考虑两个条件, 在考虑一个条件时绝对不能够受另一个条件 的影响,如果一个条件已经能够独立回答问 题,就绝对没有必要再把这两个条件联合起 来求解。实际上,在该例题中单独(2)就可确 定x不等于1,已经能够回答问题,所以本 题的正确答案应该是(B)。

请你谨记,在将所有的条件结合在一起 考虑之前,需要单独地考虑它们,在选择 (C)时应该仔细考虑是否可以选择(A)或者 (B)。

6. 数据充分题中的猜测

在解答数据充分题时,通常你会发现你不能确定两个条件中的一个是充分的还是不充分的。 注意,在很多情况下,你知道一个条件是否充分而不知道另外一个条件是否充分。实际上,你可 以进行有根据的推测,这将大大提高你获得正确答案的机会。

(1) 对于下面所述的情况,你可以排除所有错误的选项,只剩下两个可能的正确答案。

- 如果你能确信条件1是充分的,但不能确信条件2是否充分,那么该题的正确答案可能是
 (A)或者(D);
- 如果你能确信条件2是充分的,但不能确信条件1是否充分,那么该题的正确答案可能是
 (B)或者(D);
- 如果你能确信单独每一个条件都是不充分的,但不能确信两个条件联立时是否充分,那 么该题的正确答案可能是(C)或者(E)。

(2) 对于下面所述的情况,你可以先排除两个错误选项,然后从剩下的三个选项中猜出一个 答案。

- 如果你能确信条件1不充分,但不能确信条件2是否充分,那么该题的正确答案可能是
 (B)、(C)或者(E);
- 如果你能确信条件 2 不充分,但不能确信条件 1 是否充分,那么该题的正确答案可能是(A)、(C)或者(E)。

7. 切忌主观臆断, 做一些额外的假设

考生只应根据题目所提供的信息和一些永恒不变的事实(如每星期的天数)进行答题。不要就 诸如每年都在上涨的物价做出假设;即使图上一个角看起来像是 60°或 90°,也不要认为其就是一

21

个 60°的角或认为两条直线垂直,除非题目中有明确的说明。

8. 一图值千字

学会数形结合,特别是在做几何、集合或概率方面的题时,实现数形转化是解决很多问题的 关键。

9. 熟悉某些必需的日常生活知识。例如某题提到闰年,我们就应该想到,闰年的二月份有 29 天,而且应将这一数据考虑到原题中,不要因为条件1和2没有提到它而将其忽略了。

毋庸置疑, Problem Solving 中所讲的许多解题技巧同样也适合用来求解 Data Sufficiency 类的题目,在这里就不做赘述。考生在参加考试时应注意控制时间,既不要为赶时间过于忙乱而造成不必要的错误,又不要在一道难题上花费太多的时间。

总而言之,GMAT 数学部分还是有技巧可言的。但技巧归技巧,扎实的基本功和一定的练习却更是必不可少的。本书接下来的篇章中已把 GMAT 的考试要点,以及全真难题全部列出,并附以参考译文和透彻的讲解,希望能对期望在 GMAT 数学方面取得高分的考生 有所帮助。

第二篇

GMAT 数学分类思维训练

第一章

Arithmetic(算术)

算术部分主要是小学数学的内容,其中包括 Properties of Integers(整数的性质)、Fractions (分数)、Decimals(小数)、Ratio and Proportion(比率和比例)、Percents(百分比)、Powers and Roots of Numbers(幂和指数)、以及 Sets(集合)和描述统计等方面的内容。

第一节 Integers(整数)

一、The Concept of Integers (整数的概念)

1. Natural Numbers (自然数): 大于零的正整数。如: 1, 2, 3, … 其中1为最小的自然数。

2. Odd Numbers (奇数): 不能被 2 所整除的整数。如: 1, -1, 3, -3…

3. Even Numbers (偶数): 能够被 2 所整除的整数。如: 0, 2, -2, 4, -4…

4. Prime Numbers (质数):除了1和它本身之外,不能被其他正整数所整除的自然数,如: 2,3,5,7,11…其中2是最小的质数。

5. Composite Numbers (合数):除了1和它本身之外,还有其他因子的自然数,如:4,6,8,9,10…其中4是最小的合数。(注:质数和合数都不能为负数,0和1既不是质数也不是合数。)

6. Mutual Prime Numbers (互质数): 如果两个数的最大公约数为1, 那么这两个数叫做互质数。例如: 13 和 15, 19 和 23 等。

7. Multiple and Divisible (倍数和约数): 当整数 *a*能被另一个整数 *b* 所整除时, *a*称为 *b* 的倍数, *b*称为 *a* 的约数或因数。例如: 10 是 5 的倍数, 5 是 10 的约数。

8. Common Multiple (公倍数):如果一个数同时是几个数的倍数,则称这个数为它们的公倍数;公倍数中最小的称为最小公倍数(least 或 lowest common multiple)。例如:12,24,36 等都 是 2,4,6,12 的公倍数,其中 12 是它们的最小公倍数。

9. Common Factor or Divisor (公约数或公因数): 如果一个数同时是几个数的约数,则称这

23

个数为它们的公约数或公因数;公约数中最大的被称为最大公约数(公因数)(greast common factor or divisor)。例如:2,7,14 都是 28,42,70 的公约数,14 是它们的最大公约数。

10. Perfect Square(完全平方数):若一个整数开平方后还是整数,则这个数被称之为完全平方数。例如:4,9,16,25…完全平方数均为自然数。

11. Perfect Cube (完全立方数): 若一个整数开三次方后还是整数,则这数称之为完全立方数。例如: -27, -8, 0, 8, 27…

12. Quotients and Remainders (商和余数): 当一个正整数除以另一个正整数其商不为整数时就存在商和余数问题。余数和商为大于或等于零的整数,余数总小于除数。例如 15 除以 7 时, 其商为 2,余数为 1。

13. Consecutive Integers (连续整数):按从小到大的顺序相连的几个整数称为"连续整数"。例如:-2,-1,0,1,2是五个连续的整数。连续正整数的算术平均值也是首项和末项的算术平均值。

二、The Properties of Integers (整数的性质)

- 1. Odd and Even (奇偶性)
- (1) *n*是整数,则2*n*为偶数,2*n*+1为奇数。
- (2) 奇数个奇数相加减其结果必为奇数。
- (3) 偶数个奇数相加减其结果必为偶数。
- (4) 奇数和偶数相加减,其结果必为奇数。
- (5)任意多个偶数相加减,其结果必为偶数。
- (6) 若 n(n为大于1的自然数)个整数连乘其结果为奇数,则这 n个整数必然都是奇数。
- (7) 若 n (n为大于1的自然数)个整数连乘其结果为偶数,则这 n个整数中至少有一个为偶数。
 - (8) 若 n (n为大于1的自然数)个连续整数相加等于零,则 n 必为奇数。
 - (9) 若 n(n为大于1的自然数)个连续奇数相加等于零,则 n必为偶数。
 - (10) 若 n(n为大于1的自然数)个连续偶数相加等于零,则 n必为奇数。
 - (11) 自然数间相加或相乘必然还是自然数。
 - (12) 自然数间相减必然为整数(可正可负)。
 - (13) 奇数个连续整数的算术平均值等于这奇数个数中中间大小那个数的值。
 - (14) 偶数个连续整数的算术平均值等于这偶数个数中中间两个数的算术平均值。

(15) 任何一个大于2的偶数都可以表示为两个质数的和。

例 1: 下面哪个数不能表达为两个质数的	解:这五个选项中,(B),(C),(D)都是
和?	大于2的偶数,因此由以上定理可知都不是正
(A) 21	确答案; 而(A)和(E)都是奇数, 若两个数相
(B) 14	加为奇数,则这两个数必定是一个为奇数,另
(C) 18	一个为偶数。在所有的质数中2是惟一的一个
(D) 28	偶数,因此若(A)和(E)可表达为两个质数的
(E) 23	和,则必有一个2,所以只需将(A)和(E)分
	别减 2, 看所得差是否为质数,即可得出答

案。21-2=19为质数,23-2=21不为质数, 因而正确答案为(E)。

(16) 2个连续的自然数相乘必然为2的倍数,3个连续的自然数相乘必为6的倍数。

(17) 若 3 个连续自然数的算术平均值为奇数,则这三个自然数的乘积必为 8 的倍数(也即两 个连续的偶数相乘为 8 的倍数)。

例如: $\frac{4+5+6}{2}=5$,则 4×5×6=120 可被8 整除。

2. Factor and Multiple (约数和倍数)

(1) 如果整数 a 能被整数 b 整除,则 a 能被 b 的因数(或约数)所整除。

(2) 如果 a 为质数, n 为非负整数(non-negative integers or whole numbers), 则 a^n 的因数为 n+1个(包括 1 和 a^n)。

(3)0为任何一个非0整数的倍数,1为任何一个整数的约数,任何一个质数有且只有1和它本身两个约数。

- (4) 最小公倍数的求解步骤:
 - ① 将所有的数分别表示为各自的质因数的乘积;
 - ② 如果所有的乘积中有公因数,则将式子中相同的质因子都提出来,且只保留指数较大的一个因子作为公因数,除去其他乘积中指数较小的公因数;
 - ③ 将剩下的乘积中的所有因数乘起来,就得到最小公倍数。
- (5) 最大公约数的求解步骤:
 - ① 将所有的数表示成自己的质因数乘积的形式;
 - ② 将式子中相同的质因子都提出来,并取幂指数较小的一个作为其相应的公因数;
 - ③ 将取出的公因数相乘,就得到了最大公约数。

例 2: 求 84 和 90 的最小公倍数和最大公
 約数。
 第1260
 第1260
 第1260
 第1260
 第1260

它们的最大公约数=3×2=6

- (6) 最大公约数和最小公倍数的性质:
- ① 设(*a*, *b*)表示 *a* 和 *b* 的最大公约数, [*a*, *b*] 表示 *a* 和 *b* 的最小公倍数,则有如下的公式: $\frac{a \times b}{(a, b)} = [a, b]$ (注:此式仅适用于两数的情况);
- ② 若 m为自然数,则 ma 和 mb 的最大公约数为 a 和 b 的最大公约数的 m 倍;
- ③ 若 m 为自然数,则 ma 和 mb 的最小公倍数为 a 和 b 的最小公倍数的 m 倍;
- ④ 若 a 和 c 的最大公约数为 1,则 a×b 和 c 的最大公约数等于 b 和 c 的最大公约数;
- ⑤ 若 $a \pi c$ 的最大公约数为 1, 且有 $c \neq a \times b$ 的一个因子,则必有 $c \neq b$ 的一个因子;
- ⑥ 若 a 和 b 互质,且 c 可被 a 整除, c 也可以被 b 整除,则 c 可被 a×b 整除(注:必须在互质 这一条件的限制下,该结论才成立);
- ⑦ 两个自然数分别除以它们的最大公约数,所得的商互质;
- ⑧ 两个数的最小公倍数与最大公约数的乘积等于这两个数的乘积;

3. The Divisibility of Integers(整数的整除特性)

(1) Here are some shortcuts to determining divisibility by common numbers:

If the integer has this feature	Then it is divisible by
It ends in 0, 2, 4, 6 or 8	2
The sum of the digits is divisible by 3	3
The number formed by the last 2 digits is divisible by 4	4
The number ends in 5 or 0	5
The number meets the tests for divisibility by 2 and 3	6
The number formed by the last 3 digits is divisible by 8	8
The sum of the digits is divisible by 9	9
奇数位的和减去偶数位的和所得的差可被 11 整除	11

(2) 当一整数被 3, 4, 5, 8, 9 除, 不能被除尽时的余数特征

① 整数的各位的和被 3 除余几,则这个整数被 3 除余几;

② 整数的后两位被4除余几,则这个整数被4除余几;

③ 整数的最后一位被 5 除余几,则这个整数被 5 除余几;

④ 整数的最后 3 位被 8 除余几,则这个整数被 8 除余几;

⑤ 整数各位的和被 9 除余几,则这个整数被 9 除余几。

(3) 若 a 可被 b 整除, b 可被 c 整除, 则 a 可被 c 整除。

(4) 若一个等式 *b*+*c*+···+=*m*+*n*+···+*s*中仅除一项之外其余各项均可被 *a* 整除,那么此 项也被 *a* 整除。

例3:在等式 3d +8b +16c+d=4e+24f+
 48g中,若除 d 之外的其他各项都能被4整除, 项都能被4整除,则 d 也能被4整除。
 问 d 能否也被4整除。

(5) 若 a 和 b 仅为 2 位自然数,且 a, b 有如下的性质: a 的个位等于 b 的十位, a 的十位等于 b 的个位,也即 a 和 b 仅数位倒置,则这样的数必有: (a+b)是 11 的倍数,(a-b)为 9 的倍数。 且将个位和十位相加为几就是(a+b)为 11 的几倍,个位和十位差的绝对值为几就是(a-b)为 9 的几倍。

例 4: 19 和 91

解: (91-19) = 72因 9-1=8,所以 (91-19)为9的8倍。 (91+19) = 110因9+1=10,所以 (91+19)为11的10倍。

(6) 若 n 为自然数, 且 n 不被 3 整除, 则 n^2 被 3 除余 1

(7) 若 n 为奇数,则 n² 被 4 除余 1

(8) 若自然数 a 被自然数 m 除,余数为自然数 c;若 a 被 n 除其余数也为自然数 c,则 a 被 m, n 的最小公倍数除,余数仍为自然数 c。

26

(9)一个数要想被另一个数整除,该数需含有对方所具有的所有质数因子。

(10) 计算整除常用的方法(字母表达法)

大多数的考生在考试时遇到整除问题都往往采用代入数的方法,但这种方法不一定保险,下 面将举例介绍一种较为保险的方法——字母表达法。

例 5: 若自然数 n 被 3 除余 2, 被 4 除余 1, 问 n 被 12 除余几?

解:既然 n 被 3 除余 2,则 n 可写为 n= 3A+2,A 为某一自然数

既然 n被4除余1,则 n可写为 n=4B+ 1, B为某一自然数

 \Rightarrow 3A+2=4B+1 \Rightarrow 3A+2=4(B'+1)+1 \Rightarrow

⇒3A+2=4B'+5⇒ 3A-3=4B', 其中 B'为一自然数

由最后一个式子可知, 3A-3 为 3 的倍数, 根据上面讲述的性质可知 4 B'也为 3 的倍数, 而 4 和 3 互质, 依最大公约数、最小公倍数中讲述的性质可知 4 B'必为 12 的倍数, 而 原数 n就是 4 B'+ 5, 所以 n被 12 除余 5。

4. The Concept and Properties of Common Mode(同余的概念和性质)

(1) 同余定义: 若两个整数 *a*, *b* 被自然数 *m* 除有相同的余数, 那么称 *a*, *b* 对于模 *m* 同余, 用式子可表示为:

a≡b (mod m),此式可读为 a 同余 b, 模为 m

(2)同余的性质

① 反身性: a=a (mod m)

② 对称性: 若 $a \equiv b \pmod{m}$, 那么 $b \equiv a \pmod{m}$

③ 传递性: 若 $a \equiv b \pmod{m}$, $b \equiv c \pmod{m}$, 那么 $a \equiv c \pmod{m}$

④ 加减性: 若 $a \equiv b \pmod{m}$, $c \equiv d \pmod{m}$, 那么 $a \pm b \equiv c \pm d \pmod{m}$

⑤ 可乘性: 若 $a \equiv b \pmod{m}$, $c \equiv d \pmod{m}$, 那么 $a \times c \equiv b \times d \pmod{m}$

⑥ 若 $a \equiv b \pmod{m}$,那么 $a^n \equiv b^n \pmod{m}$,其中 n为自然数

⑦ 若 $a \times c \equiv b \times c \pmod{m}$, c 和 m 的最大公约数为 1,则 $a \equiv b \pmod{m}$

例 6: 2001 年的元旦是星期六,问 2002 解: 2001 年有 365 天,根据同余的概念及 年的元旦是星期几? 性质,我们可以得出下式:

 $365 = 52 \times 7 + 1 \equiv 8 \pmod{7}$

由上式可知2001年元旦是星期日。

5. The Properties of Consecutive Integers (连续整数的性质)

(1)任何两个连续整数中,一定是一奇一偶;

(2) 任何三个连续整数中, 恰有一个数是3的倍数, 而且这三个连续整数之积能被6整除;

(3) 任何两个连续整数之间除了1之外,没有别的公因数,即任何两个连续整数是互质的;

(4) k+1个连续整数 $n, n+1, n+2, \dots, n+k$ 的和是 $\left(n+\frac{k}{2}\right) \times (k+1)$ 。

三、The Basic Properties of Square(平方数的基本性质)

- 1. 平方数的个位是0,1,4,5,6,9之一;
- 2. 偶平方数能被4整除;
- 3. 奇平方数能被8整除余一,即它可写为8k+1,k为整数;
- 4. 在相邻的两个自然数的平方之间不存在其他的完全平方数;
- 5. 任何两个相邻自然数之积不是完全平方数;
- 6. 两个奇数的平方之和不是完全平方数。

四、自然数 n次幂的尾数特征

- 1. 尾数为2的数的幂的个位数一定以2,4,8,6循环
- 2. 尾数为3的数的幂的个位数一定以3,9,7,1循环
- 3. 尾数为4的数的幂的个位数一定以4,6循环
- 4. 尾数为6的数的幂的个位数一定以6循环
- 5. 尾数为7的数的幂的个位数一定以7,9,3,1循环
- 6. 尾数为8的数的幂的个位数一定以8,4,2,6循环
- 7. 尾数为9的数的幂的个位数一定以9,1循环

例 7: 3³²¹和 7¹²³的个位哪个大?

解:由以上整数的 n 次幂的特征可知,3 和 7 的 n 次幂的个位数都是每 4 次就循环一次,又由 321÷4 余 1,123÷4 余 3 可知 3³²¹的 个位数为 3,7¹²³的个位数 7³ 的个位数是一样 的,即 7¹²³的个位数为 3,因而 3³²¹和 7¹²³的个 位相同。

五、The Properties of Factors (与因子有关的特性)

1. 因子数的求法:将数 *n*分解为质因子相乘的形式,然后将每个质因子的幂指数分别加 1 之 后连乘所得的结果就是 *n*的因子的个数,即:

$$n = a^{x} \cdot b^{y} \cdot c^{z}(a, b, c 为质数)$$

因子数=(x+1)(y+1)(z+1)

例 8: 求 252 的因子个数?

解: 252=2² • 7 • 3² 所以因子数为(2+1)(1+1)(2+1)=18

2. 若自然数 n不是完全平方数,则 n的因子中小于 n的占一半,大于 n的也占一半。

3. 若自然数 n 是完全平方数,则(n也为n的一个因子,在n的所有因子中除去(n之外,小

于 √n 的因子占一半,大于 √n 的因子也占一半。

例 9: 若 k 和 s 都是自然数,且满足 k>s,	
$k \times s = 42$,问 k 有多少个可能的值?	得

- (A) 4
- (B) 6
- (C) 7
- (D) 8
- (E) 10

解:因为 $k \times s = 42$,又 k > s,所以可以推 得必然有 $k > \sqrt{42}$ 成立,否则将会使 k < s,又 因为 $k \times s = 42$,即 k为42的一个因子,因而 原题转化为问:42有多少个大于 $\sqrt{42}$ 的因子。 由上述性质知有如下计算:

42=2×3×7,则 42 有(1+1)(1+1) (1+1)=8个因子,即 42 有 $\frac{8}{2}$ =4个大于 √42 的因子,因而 k有4个可能的值,答案为(A)。

4. 推论:任何一个自然数若有奇数个因子,则此自然数必为完全平方数,若它有偶数个因子,则此数必不为完全平方数。

5. 若自然数 n有 m个因子,且 m为大于 2 的质数,则 n必为某一质数的 m-1 次方。

例 10: (GRE 考题)若某一自然数除了 1 之外只有 2 个因子,则这个自然数必为:

- (A) 奇数 (B) 偶数 (C) 4 的倍数
- (D) 某一质数的平方 (E) 质数

解:既然这个数除了1之外只有2个因子,则这个数应有3个因子(因把1加上);因为3是一个大于2的质数,所以它必然是某一 质数的(3-1)次方,答案为(D)。

- 6. 只有1个因子的自然数只有1个,它是1。
- 7. 只有 2 个因子的自然数都是质数。
- 8. 有两个以上(不包括两个)因子的数都是合数。

第三节 Fractions, Decimals and Percent (分数、小数和百分比)

一、Fractions and Decimals(分数和小数)

1. The Concept of Fractions(分数的概念)

In a fraction $\frac{a}{b}(b\neq 0)$, *a* is the **numerator**(分子) and *b* is the **denominator**(分母). The denominator of a fraction can never be 0, because division by 0 is not defined.

(1) Proper Fractions(真分数)

值小于1的分数。例如: $\frac{2}{3}$, $\frac{3}{4}$

(2) Improper Fractions(假分数)

值大于或等于1的分数。例如: $\frac{4}{9}$, $\frac{9}{4}$

(3) Simple Fraction (既约分数)

亦称为"最简分数"。当一分数的分子和分母没有大于1的公约数时,称为"既约分数。例如: $\frac{3}{4}$

(4) Mixed Number(带分数)

带分数是指一个数由一个整数和一个分数构成,例如235.

- 2. The Properties of Fractions(分数的性质)
- (1) Addition and Subtraction of Fractions(分数的加法和减法): 两个不同分母的分数相加减时,首先把它们变成相同分母的分数(Equivalent Fractions), 然后分母不变把分子相加减,在两个分数通分时,取两分数的分母的最小公倍数(least common multiple)。

(2) Multiplication and Division of Fractions(分数的乘法和除法): 两个分数相乘时,把分子分母分别相乘,然后再约分,也可先约分再把分子分母相乘;

两个分数相除时,把除数的分子分母交换位置,然后再与被除数相乘。

Time Saver: Just as in multiplication, when you divide fractions, always combine and factor terms within each fraction, where possible, before you actually do the division.

3. The Properties of Decimals(小数的性质)

In the decimal system, the position of the period or decimal point determines the place value of the digits. For example, the digits in the number **8,796.435** have the following place values:

注意: digit 是 "数字" 即 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 这十个阿拉伯数字; number 是 "数", 如 898 是一个数, 由 3 个 digit 组成。

Scientific Notation(科学计数法): Decimals are expressed as the product of a number with only one digit to the left of the decimal point and a power of 10.

例如: 0.0000486 可用科学计数法表示为: 4.86×10⁻⁵

8,245,000 可用科学计数法表示为: 8.245×10⁶

GMAT problems involving decimal numbers sometimes require you to combine these numbers by either multiplying or dividing.

(1) Multiplying decimal numbers(小数相乘). The number of decimal place (digits to the right of the decimal point) in a product should be the same as the total number of decimal places in the numbers you multiply. So to multiply decimal numbers quickly:

Multiply, but ignore the decimal points

Count the total number of decimal places among the numbers you multiplied

Include that number of decimal places in you product
例 11: 0.01×0.02×0.03	6 decimal places altogether
$1 \times 2 \times 3 = 6$	Decimals temporarily ignored
$0.01 \times 0.02 \times 0.03 = 0.000006$	Decimal point inserted

(2) Dividing decimal numbers(小数相除). When you divide (or compute a fraction), you can move the decimal point in both numbers by the same number of places either to the left of right without altering the quotient (value of the fraction). Here is a related examples: $228 \div 0.03 \left[\text{or } \frac{228}{0.03} \right] = \frac{22800}{3} = 7600$

二、Percent, Fraction, and Decimal Conversions(百分数, 分数及小数的转换)

Many GMAT questions will require you to convert percents, fractions, and decimals back and forth from one form to another. Percents are usually less than 100, but they can be 100 or greater as well. Percents greater than one hundred convert to numbers greater than 1.

例 12: How many fifths are in 280% (A) 1.4 (B) 2.8 (C) 14 (D) 28 (E) 56 (A) 1.4 (D) 28 (C) 14 (C) 15 (C) 14 (C) 14 (C) 14 (C) 14 (C) 15 (C) 14 (C) 14 (C) 14 (C) 15 (C) 14 (C) 14 (C) 15 (C) 14 (C) 15 (C) 15

例 13: A clerk's salary is \$ 320.00 after a 25% raise. Before the clerk's raise, the supervisor's salary was 50% greater than the clerk's salary. If the supervisor also receives a raise in the same amount as the clerk's raise, what is the supervisor's salary after the raise?

(A) \$ 370	(B) \$ 424	(C) \$ 448
(D) \$ 480	(E) \$ 576	

解:\$320 是办事员以前工资的 125%,所以 我们可用代数法列方程求解:设以前的工资为 x, 则由题意可得出:1.25x=\$320⇒ x=\$256

所以管理员的工资=\$256×150%+ (\$320-\$256)=\$448

三、Ratio and Proportion (比率和比例)

GMAT ratio problems sometimes involve a whole divided into two or more parts, where your task is to determine either (1) the size of one of the parts (2) the size of the whole. You can solve these problems by setting up algebraic equations.

一个比率(**ratio**)可以表示成许多方式,例如: the ratio of 3 to 4 可被表达为 3 to 4, 3:4 或 $\frac{3}{4}$ 。注意比率中项的顺序是重要的,即 3 to 4 和 4 to 3 不同。

A proportion is simply a statement that two ratios are equal. Since you can express ratios as

fractions, you can express a proportion as an equation—for example, $\frac{18}{27} = \frac{2}{3}$. If one of the four terms is missing from the proportion, you can solve for the missing term using algebra.

例 14: Among registered voters in a certain district, the ratio of men to women is 3: 5. Of the district currently includes 24,000 registered voters, how many additional men must register to make the ratio 4:5?

(A) 2000

(B) 3000

- (C) 4000
- (D) 5000
- (E) 6000

解:本题的正确答案为(B),求解可分为3步:

(1) Set up a proportion to determine the current number of registered male voters and female voters:

$$\frac{3}{8} = \frac{x}{24,000} \Rightarrow 8x = 72,000 \Rightarrow x = 9,000$$

Of the 24,000 voters, 9000 are men, and 15,000 are women.

(2) Determine the number of male voters needed altogether for a 4 : 5 men/women ratio, given that the number of female voters remains unchanged (15,000):

$$\frac{4}{5} = \frac{x}{15,000} \Rightarrow 5x = 60,000 \Rightarrow x = 12,000$$

(3) Since the district currently includes9,000 male voters, 3000 more are needed to make the ratio 4 : 5.

第三节 Problem Involving Sets(与集合有关的问题)

在 GMAT 的数学考试中,有相当比例的考题都涉及到集合问题:如中数,概率,数列,级 数以及排列组合等。这些问题虽然并不十分困难,但因我国考生在这方面所受到的训练普遍较 少,所以许多考生在遇到这类题时,一不小心就会丢分。鉴于此,本书将此作为一个比较重要的 部分来进行讲解。

一、集合的定义及分类:

A set is simply a group of two or more numbers or other terms.

具有某种属性的事物的全体称为集合,它一般由一组数或其他符号构成。组成集合的每个事物称为该集合的元素(element)。如果 S 是一个有限数量的集合,那么 |S| 被定义为元素的数目。例如: S={ 2,7,17,25},则 |S| =4。

Relationship between Sets(集合之间的关系):

1. Union(并集): the union of set A and set B 是指两个或多个集合中的所有元素,对两个集合 A, B 可表示为: A ∪ B。

2. Intersection(交集): the intersection of set A and set B 是指两个或多个集合中的所有共同 元素,对两个集合 A, B 可表示为: A ∩ B。

32

- 3. Disjoint or Mutually Exclusive: 指两个集合中没有共同元素。
- 4. 全集: 将各个子集中所有元素非重复地都加起来就是全集,用 I表示。
- 5. 非集: 非某集合元素组成的集合, 称为这集合的非, 对单集合 A 可记为 A.

二、集合的一般公式:

- 1. $\overline{A \cap B} = \overline{A \cup B}$,即 A 交 B 的非等于 A 非并上 B 非
- 2. $\overline{A \cup B} = \overline{A} \cap \overline{B}$,即 A 并 B 的非等于 A 非交上 B 非
- 3. |A∪B|=|A|+|B|-|A∩B|(对于两个集合而言)

4. |AUBUC|=|A|+|B|+|C|-|A∩B|-|A∩C|-|B∩C|+|A∩B∩C|(对于三个 集合而言)

例 15: 某班上学生选修三门课: 数学、语 文和英语。选修数学的有 35 人,选修语文的 有 30 人,选修英语的有 32 人,既选修数学又 选修语文的有 20 人,既选修语文又选修英语 的有 15 人,既选修数学又选修英语的有 22 人,而三门课都选修的有 8 人,且知道所有的 人至少选修一门课,问这个班上共有多少人? 解:我们可以设选修数学的人数为 A,选 修语文的人数为 B,选修英语的人数为 C,则 由题意可知:

A∩B=20 A∩C=22 B∩C=15 A∩B∩C=8 求这个班共有多少人,就是求 A, B, C的全 集,依据上述三个集合的公式, |AUBUC| = |A| + |B| + |C| - |A∩B| - |A∩C| -|B∩C| + |A∩B∩C|,则有全班共应有 I=35+ 30+32-20-22-15+8=48 人。

GMAT problems involving sets come in four different varieties:

- I. Descriptive statistics (mean, median, mode, range, standard deviation, frequency distribution)
- **II. Progressions**(recognizing a pattern among a series of terms)
- III. Comparisons (finding sums of and differences between different sets of numbers)
- IV. Sequence (arithmetic sequence, geometric sequence)
- V. Probability (determining possible combinations of terms within sets as well as between sets)

三、Problems Involving Descriptive Statistics(描述统计问题)

1. Arithmetic mean or Average(算术平均数): in a set of n measurements, the sum of the measurements divided by n

2. Geometric Average(几何平均数): 几何平均数为 n个数的乘积开 n次方。

例如: a, b, c, d, f五个数的几何平均数为 $\sqrt[3]{abcdf}$

注:算术平均数总是大于或等于几何平均数,对于两个数的情况则有如下式子成立:

 $\frac{a+b}{2} \ge \sqrt{ab}$, 当 a=b时此式的等号成立。

3. Median(中数): the middle measurement after the measurements are ordered by size (or the average of the two middle measurements if the number of measurements is even).

注:要得到 n个数的中数,首先将这 n个数按从大到小的顺序排列,如果 n是奇数,中数 被定义为中间的那个数,如果 n是偶数,中数被定义为中间两个数的平均值。当 n较大时,中 数被定义为 50%的线所通过的有序排列中的位置的那个数。也就是说,如果 n的具体数值不确定而为百分数,那么第 50%的对象所对准的那一个数就是中数。

4. Mode(众数): the measurement that appears most frequently in a set.

注:一组数中的众数是指出现频率最高的数。

5. Range (值域): the difference between the greatest measurement and the smallest measurement.

注: Range 是表明数的分布的量,其被定义为最大值与最小值的差。

6. Standard deviation(标准方差): a measure of dispersion among members of a set.

注:标准方差是用来表明数据的离散性的量,标准方差的求解步骤如下:

I. find the arithmetic mean(求算术平均值)

Ⅱ. find the differences between the mean and each of the numbers(求每个数与算术平均值的差)

Ⅲ. square each of the differences(把所得的差值分别平方)

Ⅳ. find the average of the squared differences(求这些差值平方数的算术平均值)

V. take the nonnegative square root of this average(取这个算术平均值的非负平方根)

具体地说,有 n个数分别为 x_1 , x_2 , …, x_n ,这 n个数的算术平均值为 \overline{x} , 那么这 n个数的

标准方差可用下式表示: Standard deviation =
$$\sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}}$$
。

注意:当 n的数值为确定的几个数时,上式中标准方差的分母一定是 n;但当题目告诉你这些数值为随机选择的样本时,那么计算随机选择的这几个数的 Standard deviation 时,上式的分母应为 n-1。在 GMAT 考试中,95%的情况下分母为 n。

7. Frequency distribution(频率分布):频率分布用于展示不同数据出现的频率。

在某些集合中,如果用频率分布来描述集合中的数据会显得更会方便一些。下面这些数据表示居住在某个街区的 25 个家庭中每一个家庭所抚养的孩子数:

1, 2, 0, 4, 1, 3, 3, 1, 2, 0, 4, 5, 2, 3, 2, 3, 2, 4, 1, 2, 3, 0, 2, 3, 1 我们可以根据每个数据(*x*)出现的频率(*f*)把这些数据进行分类如下:

Frequency	Distribution
x	f
0	3
1	5
2	7
3	6
4	3
5	1
Total	25

从表中我们可以看出,用频率分布的方法对一个集合中的数据进行表示,不但快速概括了数

34

据,而且大大简化了某些运算过程。比如我们要计算平均每一个家庭抚养的孩子数时,我们只要 把每一个 x值与其对应的频率 f 值相乘,然后再除以频率 f 值的和,即总的家庭数就可以了:

 $\frac{0 \times 3 + 1 \times 5 + 2 \times 7 + 3 \times 6 + 4 \times 3 + 5 \times 1}{25} = 2.16$

因为一共有 25 个家庭,所以这些数据的中数(median)是从小到大数的第十三个数。从上 面表格中的 *f* 值我们可以看出第 13 个数一定是 2。该组数据的值域(range)是 5-0,即 5。标 准方差(standard deviation)也可以根据频率分布很容易地算出来。

例 16: 根据下面的频率分布图,分别计算 mean, median, mode, range 和 standard deviation.

-2	-4	0	-1	Data Value	$\begin{array}{c} \text{Frequency} \\ f \end{array}$
-3	-1	-2	0	0	7
				-1	5
0	0	0	0	-2	3
				-3	1
-4	-1	-1	-5	-4	2
0	1	L	0	-5	2
0	-1	-5	-2	Total	20

Mean=

$$\frac{(0)(7)+(-1)(5)+(-2)(3)+(-3)(1)+(-4)(2)+(-5)(2)}{20}$$
=-1.6
Median = $\frac{(-1)+(-1)}{2}$
=-1 (第 10 个和第 11 个数的算术平
均值)
Mode=0 (0 出现的频率最高)
Range=0-(-5)=5
Standard deviation=
 $\sqrt{\frac{(-5+1.6)^2(2)+(-4+1.6)^2+\dots+(0+1.6)^2(7)}{20}}$

第四节 Permutation, Combination and Probability (排列,组合及概率)

一、有关概念

1. Factorial Notation(阶乘): *n*个自然数 1,2,3,...,*n*的乘积称为 *n*的"阶乘",记作 *n*!。例如: 4!=4×3×2×1。零的阶乘规定为 1,即 0!=1!=1。

2. Permutation (排列): 排列分为两种,非重复的排列问题和可重复的排列问题。前者简称 排列问题。这个问题的一般提法是: 从 n个不同的元素 a_1 , a_2 , a_3 , …, a_n 中,无放回地任取 m (1 $\leq m \leq n$)个按照一定的顺序排成一列,问这样的排列共有多少种?这样的排列总数记为 P_n^m 。

3. 可重复的排列:这个问题的一般提法是:从 n 个不相同的元素 a₁, a₂, a₃, …, a_n 中, 有放 回地任取 m 次, 每次取一个, 所得到不同的序列共有多少种? 这种排列共有 n^m 种。

4. Recombination(组合):从 *n*个不同元素中,任取 *m*个元素并成一组,叫做从 *n*个不同的元素中取出 *m*个元素的一个组合,用符号 *C*^{*m*}_{*n*}表示。

5. Probability(概率):亦称 "或然率"、"几率",某一类事件在相同的条件下可能发生也可能 不发生,这类事件称为 "随机事件" (random occurrence)。概率就是用来表示随机事件发生的可 能性大小的一个量。很自然地把必然发生的事件的概率定为 1,并把不可能发生的事件的概率定 为 0,而一般随机事件的概率是介于 0 和 1 之间的一个数。 (1) 等可能性事件的概率:如果一次试验中共有 n种等可能出现的结果,其中事件 A 包含的结果有 m种,那么事件 A 的概率 $P(A) = \frac{m}{n}$ 。

例 **17**:有7个奇数,5个偶数,从这 12 个数中任取一个是奇数的概率? 解:这12个数任取1个有12种可能结
 果,取奇数的结果为7种,因此其概率为<u>7</u>12。

(2) 互斥事件发生的概率:如果事件 A₁, A₂, …, A_n 彼此互斥,那么事件 A₁, A₂, …, A_n 中有一个发生的概率为这 n个事件分别发生的概率的和,即 P(A₁+A₂+…+A_n)=P(A₁)+P(A₂)+…+P(A_n),也即用 "or,或"表达。(注:所谓互斥是指任两个之间都不可能同时发生)。

(3)相互独立事件同时发生的概率:如果事件相互独立,那么n个事件同时发生的概率等于每个事件发生的概率的积,即 $P(A_1, A_2, \dots, A_n) = P(A_1)P(A_2) \dots, P(A_n)$,也即用"且"或"and"来表达。

例 19: A 坛中有 7 个白球,有 3 个黑球, B 坛中有 4 个白球,5 个黑球,问从这两个坛 中分别摸出一个都是白球的概率? 解:从A坛中摸出一个白球的概率为 $\frac{7}{7+3}$,从B坛中摸出一个白球的概率为 $\frac{4}{4+5}$, 这两个事件是相互独立的,互不影响,则根据 上面所述其概率应为 $\frac{7}{10} \times \frac{4}{9} = \frac{14}{45}$ 。

(4) 独立重复试验发生的概率:如果在一次试验中某事件发生的概率是 P,那么在 n次独立 重复试验中这个事件恰好发生 k 次的概率为 $P_n(k) = C_n^k \cdot P^k(1-P)^{n-k}$ 。

例 20: 某气象站天气预报准确率为 80%, 求 5 次预报中有 4 次准确的概率? 解:设 P 为预报一次,结果准确的概率, 预报 5 次,相当于 5 次独立重复试验,根据上 式则有: $P_5(4) = C_5^4 \times 0.8^4 \times (1-0.8)^{5-4} = 5 \times 0.8^4 \times 0.2 = 0.4096$ 。

6. 事件的包含与相等:设有两个随机事件 A 和 B,如果 A 发生,那么 B 必发生,则称 B 包含 A,记作 A⊂B 或 B⊃A,如果事件 A 包含 B,同时事件 B 也包含事件 A,则称事件 A 与 B 相等或等价,记作 A=B。

7. 事件的和与积:事件"A或B"称为事件 A 与事件 B 的和,记作 A+B或 A ∪ B;事件 A 且 B 称为事件 A 与 B 的积,记作 A • B 或 A B 或 A ∩ B。事件的和与积可推广到多于两个事件的 情形。

8. 对立事件与事件的差:称事件"非 A"为 A 的对立事件,记作 \overline{A} 。事件 A 同 B 的差表示 A 发生而 B 不发生的事件,记作 A-B 或 A \overline{B} 。

9. 事件的互不相等(Mutually exclusive events): 在一次试验中,如果事件 A 与事件 B 不能同时发生,即 AB=V(不可能事件),那么称 A 和 B 是互不相容的事件。

10. 条件概率: 若 A, B 是两个随机事件, P(A) \neq 0, 则称在 A 发生的前提下 B 发生的概率 为条件概率, 记作 P(B/A)。

11. 事件的独立性(Independent events):如果一个事件的发生并不影响另一个事件发生的概率,则称这两个事件是相互独立的。

二、有关性质

1. 排列与组合:

 $(2) C_n^m = \frac{n!}{m! (n-m)!} (1 \le m \le n)$

$$(3) C_n^m = C_n^{n-m} (1 \le m \le n)$$

- (4) $C_{n+1}^m = C_n^m + C_n^{m-1}$
- (5) $0!=1, C_n^0 = P_n^0 = 1, C_n^1 = P_n^1 = n(n \ge 1)$

2. 任何随机事件 A 在相同的条件下发生的概率介于 0 和 1 之间,即 0≤P(A)≤1;必然事件 U 和不可能事件 V 发生的概率分别为 1 和 0,即 P(U)=1, P(V)=0。

3. 加法原则和乘法原则:

加法原则:做一件事,完成它可以有 n类办法,在第一类办法中有 m₁ 种不同的方法,在第 二类办法中有 m₂ 种不同的方法……,在第 n类办法中有 m_n 种不同的方法,那么完成这件事共有 N=m₁+m₂+…+m_n 种不同的方法(在表达中用"或, or"时即为加法原则)。

例 21: 某天从 A 地到 B 地,可乘汽车, 解: 根据加法原则可知共有 5+4+2=11
也可乘火车,还可乘飞机,一天中,汽车有 5 种走法。
班,火车有 4 班,飞机有 2 班,问一天中 A
地到 B 地共有多少种走法?

乘法原则:做一件事,完成 它需分为 n个步骤,做第一步有 m_1 种不同的方法,做第二步有 m_2 种不同的方法……,做第 n步有 m_n 种不同的方法,则完成这件事共有 $N = m_1 \times m_2 \times \cdots \times m_n$ 种不同的方法。

例 22:由 A 到 B 有 3 条路,由 B 到 C 有 解:根据乘法原则可知共有 3×4=12 种
 4 条路,问由 A 经 B 到 C 有多少种不同的走 不同的走法。
 法?

- 4. 概率的加法公式:
- (1) $P(A) = 1 P(\overline{A})$
- (2) 若事件 A, B 互不相容, 则 P(A+B)=P(A)+P(B)
- (3) 对任意两事件 A, B, 则 P(A+B)=P(A)+P(B)-P(AB)
- 5. 概率的乘法公式:
- (1) P(B/A) = P(AB) / P(A), $(P(A) \neq 0)$
- (2) 若事件 A 和 B 是相互独立的, 当 P(A) ≠0 时, P(AB) = P(A) P(B)
- 三、事件的运算规律
 - (1) A+B=B+A (加法交换律)
 - (2) A+(B+C)=(A+B)+C(加法结合律)
 - (3) A + A = A
 - (4) A+A=U("U"表示全集)
 - (5) A+U=U
 - (6) A+V=A("V"表示空集)
 - (7) A・B=B・A(乘法交换律)
 - (8) (AB) C= A(BC) (乘法结合律)
 - (9) $A \cdot A = A$
 - (10) $\mathbf{A} \cdot \overline{\mathbf{A}} = \mathbf{V}$
 - (11) $\mathbf{A} \cdot \mathbf{U} = \mathbf{A}$
 - (12) $A \cdot V = V$
 - (13) A(B+C)=AB+AC (分配率)
 - (14) AB+BC=B(A+C) (分配率)
 - (15) $\overline{A+B} = \overline{A} \cdot \overline{B}$
 - (16) $\overline{\mathbf{A} \cdot \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$

第五节 重点试题精练及解析

- There are between 100 and 110 cards in a collection of cards. If they are counted out 3 at a tie, there are 2 left over, but if they are counted out 4 at a time, there is 1 left over. How many cards are in the collection?
 - (A) 101
 - (B) 103
 - (C) 106
 - (D) 107

- 在某一卡片集中,有 100 到 110 张卡片。 若每次点3张,将有2张剩下,但是若每 次点4张,则有1张剩下。问此卡片集中 有多少张卡片?
- 解:本题的正确答案为(A)。该题也即让考生 求从100到110之间的数中,被3除余2, 被4除余1的数是哪一个。很明显100到 110之间被3除余2的数有101,104, 107和110,而被4除余1的数有101, 105,109,求这两个集合的交集可得此卡

(E) 109

- 2. What is the least possible product of 4 different integers, each of which has a value between -5 and 10, inclusive?
 - (A) 5040

$$(C) - 720$$

(D) - 600

(E) - 120

3.

LEAGUE RESULTS

Team	Number of Games Won
А	4
В	7
С	9
D	2
Е	2
Х	

According to the incomplete table above, if each of the 6 teams in the league played each of the other teams exactly twice and there were no ties, how many games did team X win? (Only 2 teams play in a game.)

(A) 4 (B) 5 (C) 6 (D) 8 (E) 10

4. In a certain game, a large container is filled with red, yellow, green and blue beads worth, respectively, 7, 5, 3, and 2 points each. A number of beads are then removed from the container. If the product of the point values of the removed beads is 147,000, how many red beads were removed? (A) 5

(B) 4

(C) 3

片集中应有101张卡片。

- 在-5到10之间(包括-5和10)的四个不 同整数的乘积的最小值是多少?
- 解:本题的正确答案为(B)。四个整数的积有 可能为负值,负值的绝对值越大,则其值 越小。要使在-5到10之间的四个整数 的乘积最小,则在保证有一个最小的负数 情况下,其余三个数都尽可能取最大值, 也即这四个数应为-5,10,9,8,它们的乘 积为-3,600。
- 3. 根据左面不完整的表格,如果该联盟中的 6支队伍中的每一支都与其他的任一支队 伍仅比赛两次,且没有平局,那么X赢了 多少场比赛(每一场比赛中仅有两支队伍 比赛)?
- 解:本题的正确答案为(C)。该题也即让考生 求该联盟所进行比赛的总次数,6支队伍 中任两支比赛两次,则共进行了2C=30 场比赛,也即总的获胜次数为30,因此X 获胜的次数为:

30 - (4 + 7 + 9 + 2 + 2) = 6

- 在某一游戏中,一个大容器中装有红色、 黄色、绿色和蓝色珠子,他们分别值7, 5,3和2点。一些珠子从容器中取出,如 果移出的珠子的点值的乘积等于147,000, 那么有多少红色的珠子被移出?
- 解:本题的正确答案为(D)。做对该题的关键 在对题意的正确理解。根据题意可知,只 要147,000 能被红色珠子的点值7 除尽, 则移出的珠子中一定有红色珠子,且 147,000能被7整除多少次,移出的珠子

39

(D) 2 (E) 0

5. When the integer n is divided by 6, the remainder is 3. Which of the following is NOT a multiple of 6?

(A) <i>n</i> -3	(B)	n+3
(C) 2 <i>n</i>	(D)	3 n
(E) 4 <i>n</i>		

Xavier, Yvonne, and Zelda each try independently to solve a problem. If their individual probabilities for success are ¹/₄, ¹/₂,

and $\frac{5}{8}$, respectively, what is the probabili-

ty that Xavier and Yvonne, but not Zelda, will solve the problem?

(A)
$$\frac{11}{8}$$
 (B) $\frac{7}{8}$
(C) $\frac{9}{64}$ (D) $\frac{5}{64}$
(E) $\frac{3}{64}$

- 7. How many positive integers k are there such that 100k is a factor of (2^2) (3) (5^3) ?
 - (A) None
 - (B) One
 - (C) Two
 - (D) Three
 - (E) Four

中就有多少个红色的珠子。因此考生只需把147,000分解成7,5,3和2相乘的形式就可以了:

147000=7² • 5³ • 3¹ • 2³ 因此移出的珠子中红色、黄色、绿色和蓝 色珠子分别为 2, 3, 1 和 3 个。

- 当整数 n 被 6 除时,其余数(remainder) 为 3。下列哪一项不是 6 的倍数?
- 解:本题的正确答案为(D)。根据题意可设n= 6k+3,其中 k 为整数,则五个选项的值 可分别表示为:6k,6(k+1),6(2k+1), 6(k+1)+3,6(4k+2)。由以上数据可 知 3n不是6的倍数。
- 6. X, Y和Z三人试图各自独立地解答一个问题。若他们每个人成功的概率(probability)分别为¹/₄, ¹/₂和⁵/₈, 那么X和Y将解出该问题, 而Z解不出该问题的概率是多少?
- 解:本题的正确答案为(E)。根据题意可知 X 解出此问题的概率为 $\frac{1}{4}$,Y 解出此问题的 概率为 $\frac{1}{2}$,而 Z 解不出题目的概率为 $1-\frac{5}{8}=\frac{3}{8}$,因此 X 和 Y 解出此题而 Z 解 不出此题的概率为: $\frac{1}{4}\cdot\frac{1}{2}\cdot\frac{3}{8}=\frac{3}{64}$
- 有多少个正整数(positive integer)k可以满 足 100k是(2²)(3)(5³)的一个因子?
- 解:本题的正确答案为(E)。(2)²(3)(5³)=
 (2×5)²(3)(5)=100×3×5,要使100k是
 (2)²(3)(5³)的一个因子,则k应为3×5的
 一个因子。因为3×5共有1,3,5,15 四
 个正整数因子,所以共有四个这样的k值。

8. If the sum of the first n positive integers isS, what is the sum of the first n positive even integers, in terms of S?

(A) $\frac{S}{2}$ (B) S (C) 2S (D) 2S+2 (E) 4S

9. When 10 is divided by the positive integer n, the remainder is n-4. Which of the following could be the value of n?

(A) 3	(B) 4
(C) 7	(D) 8
(E) 12	

- 10. If n is an integer, which of the following CANNOT be a factor of 3n+4?
 - (A) 4
 - (B) 5
 - (C) 6
 - (D) 7
 - (E) 8
- 11. If n is a positive integer, then n(n+1)(n+2) is
 - (A) even only when n is even
 - (B) even only when n is odd
 - (C) odd whenever n is odd
 - (D) divisible by 3 only when n is odd
 - (E) divisible by 4 whenever n is even
- How many integers between 324,700 and 458,600 have tens digit 1 and units digit

- 若前 n个正整数 (positive integers)的和为 S, 那么前 n个正偶数 (even integers)的和 是多少(用 S表达)?
- 解:本题的正确答案为(C)。前 n个正整数的 和为:

 $S=1+2+3+\dots+n$

前 n个正偶数的和为: 2+4+6+···+2n=2(1+2+3+···+n)=2S

- **9.** 当 10 被正整数 n 除时,其余数为 n-4。 下面哪一个可以是n的值?
- 解:本题的正确答案为(C)。根据题意可得 mn+(n-4)=10,其中 m为正整数。把 五个选项代入发现,只有当 n=7 时,m 取整数1,其余几个值得出的 m值均不为 整数。
- **10.** 若 *n*是一个整数,则下列哪一个不可能是 3*n*+4的因子(factor)?
- 解:本题的正确答案为(C)。一般采用排除法 来解此类数字规律题。(A)当 n=0 时,4 是 3n+4 的因子;(B)当 n=7 时,5 是 3n +4 的因子;(C)无论 n取何值,3n+4 都 不可能有6 这个因子;而(D)中当 n取1 时 3n+4 可以被7整除;(E)中当 n取4 时 3n+4 可被8整除。
- **11.** 若 n 是一个正整数,则 n(n+1)(n+2)是:
 - 解:本题的正确答案为(E)。n(n+1)(n+2)是 三个连续正整数的乘积,而根据连续整数 的性质可知,无论n取何数,他们三个数 中一定有一个偶数,且一定有一个数是3 的倍数,所以n(n+1)(n+2)一定是偶数, 且能被3整除;若n是偶数时,则n+2也 一定是偶数,所以此时n(n+1)(n+2)也 一定能被4整除。
 - 在 324700 和 458600 之间有多少个十位数 为1 且个位数字为3 的整数?

3?

(A) 10,300

(B) 10,030

- (C) 1,353
- (D) 1,352
- (E) 1,339
- 13. If each of the following fractions were written as a repeating decimal, which would have the longest sequence of different digits?
 - (A) $\frac{2}{11}$ (B) $\frac{1}{3}$ (C) $\frac{41}{99}$ (D) $\frac{2}{3}$ (E) $\frac{23}{37}$
- 14. If Carmen had 12 more tapes, she would have twice as many tapes as Rafael. Does Carmen have fewer tapes than Rafael?(1) Rafael has more than 5 tapes.
 - (2) Carmen has fewer than 12 tapes.

- 15. Which of the following procedures is always equivalent to adding 5 given numbers and then dividing the sum by 5?
 - I Multiplying the 5 numbers and then finding the 5th root of the product.

- 解:本题的正确答案为(E)。在十位数(tens digit)和个位数(units digit)一定的情况下, 就要看百位,千位,万位及十万位上有多 少个不同的数。考虑到存在数 324713,而 没有数 458613,因此在这两数之间共出现 十位数为 1 且个位数为 3 的整数的个数 为:4586-3247=1339 个。
- 13. 若下面的每一个分数都用循环小数
 (repeating decimal)来表达,则哪一个分数具有最长的不同数字序列?
- 解:本题的正确答案为(E)。五个选项中的数 都是无限循环小数,很明显 $\frac{1}{3}$ 和 $\frac{2}{3}$ 的循环 节只有一位;而 $\frac{2}{11}$ 和 $\frac{41}{99}$ 的循环节有两位, 他们分别以 0.18 和 0.41 循环; $\frac{23}{37}$ 的循环 节有三位,以 0.612 循环。
- 14. 若 Carmen 再多 12 盘磁带,她的磁带数量 将是 Rafael 的两倍。Carmen 的磁带比 Rafael 的少吗?
 (1) Rafael 的磁带超过 5 盘
 - (2) Carmen 的磁带不到 12 盘
- 解:本题的正确答案为(B)。用 C 代表 Carmen 所拥有的磁带数量,用 R 代表 Rafael 所拥 有的磁带数量,则根据题意可得 Carmen 与 Rafael 的磁带关系式为:C+12=2R 根据此式可知(1)不充分,因为 C=2, R=7 时满足上面的等式,而 C=14, R=13 时也 满足上面等式;(2)充分,因为 R= $\frac{C+12}{2}$, 也即 R 是 C 和 12 的算术平均值,且它们都 为正整数,所以有 C<R<12。
- **15.** 下面哪一做法始终等同于把 5 个给定的数 相加然后把其和除以 5?
 - 把 5 个数相乘,然后求其*乘积*(prod-uct)的五次方根。
 - Ⅱ 把5个数相加,然后把和加倍,且把

- I Adding the 5 numbers, doubling the sum, and then moving the decimal point one place to the left.
- III Ordering the 5 numbers numerically and then selecting the middle number.
- (A) None
- (B) I only
- (C) ∏ only
- (D) Ⅲ only
- (E) I and II
- **16.** If a 3-digit integer is selected at random from the integers 100 through 199, inclusive, what is the probability that the first digit and the last digit of the integer are each equal to one more than the middle digit?

(A)
$$\frac{2}{225}$$
 (B) $\frac{1}{111}$
(C) $\frac{1}{110}$ (D) $\frac{1}{100}$
(E) $\frac{1}{50}$

- 17. Coins are to be put into 7 pockets so that each pocket contains at least one coin. At most 3 of the pockets are to contain the same number of coins, and no two of the remaining pockets are to contain an equal number of coins. What is the least possible number of coins needed for the pockets?
 - (A) 7
 - (B) 13
 - (C) 17
 - (D) 22
 - (E) 28
- 18. If n is a positive integer and $k=5.1\times10^{n}$, what is the value of k?

小数点向左移动一位。

- Ⅲ 把5个数字排序然后选择中间的数。
- 解:本题的正确答案为(C)。此题也就是问哪 一做法等同于把五个数求算术平均值。 I很明显是对五个数求几何平均值的程 序,而几何平均值与算术平均值在大多 数的情况下是不相等的,所以I不正确; 而III是求五个数的中数,中数与算术平 均数同样在大多数情况下是不同的,所 以III也不正确; II相当于把五个数的和 乘以2再除以10,所以相当于把五个数 求算术平均值。
- 16. 若从 100 到 199(包括首尾数字)中随机选出一个 3 位 整数(3-digit integer),该整数的第一位和最后一位都等于中间一位加 1的概率是多少?
- 解:本题的正确答案为(D)。从100 到199, 包括首尾数字共有100个数字,第一位和 最后一位数字比中间那一位的数字大1的 数只有101 这一个数字,所以概率为<u>1</u>100。
- 17. 把一些硬币放入7个口袋中,每个口袋至 少放一个。最多只有3个口袋中的硬币数 相同,且其余的口袋中没有任何两个口袋 中的硬币数相同。问最少需要多少个硬币 来放入这些口袋中?
- 解:本题的正确答案为(C)。要使放入口袋中的硬币数目最少,就要使只放一个硬币的口袋的数目尽可能的多。根据题意可知,这样的口袋最多只有三个,而其余的四个口袋,则取尽可能小的且互不相同的正整数,分别为2,3,4,5。因此这些口袋中所需的最少硬币个数为3×1+2+3+4+5=17。
- 18. 若 n是一个 正整数 (positive integer), 且
 k=5.1×10ⁿ, 那么 n的值是多少?

(1) $6,000 \le k \le 500,000$

(2) $k^2 = 2.601 \times 10^9$

19. The positive integer *n* is divisible by 25. If \sqrt{n} is greater than 25, which of the follow-

ing could be the value of $\frac{n}{25}$? (A) 22 (B) 23 (C) 24

- (D) 25 (E) 26
- 20. If X and Y are sets of integers, X△Y denotes the set of integers that belong to set X or set Y, but not both. If X consists of 10 integers, Y consists of 18 integers, and 6 of the integers are in both X and Y, then X△Y consists of how many integers?
 (A) 6 (B) 16 (C) 22
 (D) 30 (E) 174
- **21.** If a and b are positive integers, what is the value of a+b?
 - (1) $\frac{a}{b} = \frac{5}{8}$
 - (2) The greatest common divisor of a and b is 1.

- (1) 6,000 < k < 500,000
- (2) $k^2 = 2.601 \times 10^9$
- 解:本题的正确答案为(D)。(1)充分,因为根据(1)可得 $6.0 \times 10^3 < 5.1 \times 10^n < 5 \times 10^5$ 也即 3 < n < 5,又因为 n 是整数,所以 n=4;(2)充分,因为根据 $k^2 = (5.1)^2 \cdot 10^8$,也可推出 n=4。
- **19.** 正整数 n可以被 25 整除(divisible)。若 \sqrt{n} 大于 25,则下面哪一项是 $\frac{n}{25}$ 的值?
- 解:本题的正确答案为(E)。因为 n是正整数, 所以由 \sqrt{n} 大于 25 可推知 $n>25^2$,因此 $\frac{n}{25}$ 一定大于 25,在五个选项中只有(E)选项 的 26 满足此条件。
- 20. 若 X 和 Y 是整数的集合, X△Y 表示属于 集合 X 或集合 Y, 但不同属于这两个集合 的整数的集合。若 X 中包括 10 个整数, Y 中包括 18 个整数, 且有 6 个整数同时 属于 X 和 Y, 那么 X△Y 中有多少个整 数?
- 解:本题的正确答案为(B)。根据题意可知 X
 △Y 中的整数数目为:

(10-6)+(18-6)=16

- **21.** 若 a 和 b 是正整数(**positive integer**), a+b 的值是多少?
 - (1) $\frac{a}{b} = \frac{5}{8}$

(2) a 和 b 的最大公约数是 1。

解:本题正确答案为(C)。(1)不充分,根据 $\frac{a}{b} = \frac{5}{8}$,可设 a = 5m, b = 8m,其中 m为 整数,则 a + b = 8m,因为 m的值有无穷 多个,所以 a + b的值有无穷多个;(2)不 充分,因为最大公约数是1的两个数也有 无穷多个;(1)+(2)充分,根据(1)有 a = 5m, b = 8m,而根据(2)可知 a和 b的最 大公约数为1,也即 m = 1,所以 a = 5, b = 8, a + b = 13。 **22.** Is *n* an integer?

(1) n^2 is an integer.

(2) \sqrt{n} is an integer.

- 23. Of 30 applicants for a job, 14 had at least 4 years experience, 18 had degrees, and 3 had less than 4 years experience and did not have a degree. How many of the applicants had at least 4 years experience and a degree?
 - (A) 14
 - (B) 13
 - (C) 9
 - (D) 7
 - (E) 5

24.

	То						
Fror	n	А	В	С	D	Е	F
	А		3	3	2	7	3
	В	3		3	4	5	5
	С	3	3		1	2	4
	D	2	4	1		5	5
	Е	7	5	2	5		6
	F	3	5	4	5	6	

The table above shows the cost, in dollars, of traveling to and from cities A,

- 22. N是一个整数吗?
 - (1) n² 是一个整数

 $(2)\sqrt{n}$ 是一个整数

- 解:本题的正确答案为(B)。(1)不充分,因为 n可以取 2 和 2 都满足 n² 是一个整数的条件,所以无法确定 n 是否为整数;(2)充分,因为整数的平方仍为整数,所以若√n 是整数,则 n 一定也是一个整数。
- 23. 30个人申请一项工作,其中14个有4年 的工作经验,18个人拥有学位,3个人的 工作经验不到4年且没有学位。问有多少 申请者至少有4年的工作经验且拥有学 位?
- **解:**本题的正确答案为(E)。此题可以通过画 文氏图来解,如下图所示:

从图中可以看出,有学位且有4年以 上工作经验的申请者就是图中的阴影部 分,设有x人,则根据题意可得:3+18 +14-x=30 \Rightarrow x=5人。

- 24. 左面的表格表示从 A, B, C, D, E和 F 中的任一城市出发到其他任一城市的旅行 费用(以美元计)。一销售代表想离开 A, 旅行到 C, E和 F, 然后再回到 A。若该 销售代表要到达的第一个城市一定是 E, 则整个旅途的最低费用是多少?
- 解:本题的正确答案为(C)。若第一站为从 A 到 E,则该销售代表有两种可选择的道路:

(1)
$$A \rightarrow E \rightarrow C \rightarrow F \rightarrow A$$

(2) $A \rightarrow E \rightarrow F \rightarrow C \rightarrow A$

B, C, D, E, and F. A sales representative wants to leave from A, travel to C, E, and F, and return to A. If the first city that the sales representative travels to must be E, what is the minimum possible cost for the entire trip?

(A) \$ 13	(B) \$ 14
(C) \$ 16	(D) \$ 18

(E) **\$**20

25. If an integer *n* is divisible by both 6 and 8, then it must also be divisible by which of the following?

- (A) 10
- (B) 12
- (C) 14
- (D) 16
- (E) 18
- 26. If n is a prime number greater than 3, what is the remainder when n^2 is divided by 12?
 - (A) 0
 - (B) 1
 - (C) 2
 - (D) 3
 - (E) 5
- 27. Of the following sums, which is greatest?

(A)
$$\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} + \frac{1}{\sqrt{5}}$$

(B) $\frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2}$
(C) $\frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^5}$
(D) $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4}$
(E) $\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5}$

根据题目表格中的数据可知两条道路的费 用分别为:(1)=7+2+4+3=16 美元

(2)=7+6+4+3=20 美元

由上分析可知在道路1的花费最低为 16美元。

- 25. 若一整数 n 既能被 6 整除 (divisible) 又能被 8 整除,则它还可以被下列哪一项整除?
- 解:本题的正确答案为(B)。能被6整除,则 该数一定能被2和3整除;能被8整除, 则该数一定能被2和4整除;去掉相同的 因子,则n一定能被3和4整除,而3和 4是互质数,所以n一定能被3×4=12整 除。
- 26. 若 n是一个大于 3 的质数 (prime number),
 那么 n² 被 12 除时的余数 (remainder)等于
 多少?
- 解:本题的正确答案为(B)。考生在做该题时可以用尝试法:任取一个大于3的质数去除以12,发现任一大于3的质数平方后被12整除时,余数总为1,例如7² = 49,49÷12得到商为4,余数为1。
- 27. 在下列和式中,哪一个的值最大?
- 解:本题的正确答案为(A)。(D)选项的值明显 小于(E)选项的值;在(A),(B),(C)和 (E)这四个选项中分母的值大小排序为: (B)>(C)>(E)>(A)。在分子大小都一样 的情况下,分母小的分式的值大,所以(A) 选项<u>1</u>++<u>1</u>/4+<u>1</u>5的值最大。

Pat will walk from intersection X to intersection Y along a route that is confined to the square grid of four streets and three avenues shown in the map above. How many routes from X to Y can Pat take that have the minimum possible length?

- (A) Six
- (B) Eight
- (C) Ten
- (D) Fourteen
- (E) Sixteen
- **29.** Committee X and committee Y, which have no common members, will combine to form Committee Z. Does Committee X have more members than Committee Y?
 - (1) The average (arithmetic mean) age of the members of Committee X is25.7 years and the average age of the members of Committee Y is 29.3 years.
 - (2) The average (arithmetic mean) age of the members of Committee Z will be 26.6 years.

- 28. Pat 将沿着如左图所示的由 4 条横向街道和 3 条纵向街道所构成的正方形路线网从十字路口 X 步行到十字路口 Y。Pat 从 X 到 Y 可走的最短路线数目是多少?
- 解:本题的正确答案为(C)。由图可知,X到 Y的最短长度为5个正方形的边长,要想 使路线最短,经过第2,第3和第4街的 顺序一定是固定的,且经过B大街和C大 街的顺序也肯定是固定的,否则不可能是 最短路线,最后从X点到Y点必然经过 2,3,4,B,C这5条直线。因此本题转 化为在满足顺序2,3,4和B,C的情况 下,求2,3,4,B,C这5个元素的排 列:
 - (1)在5个位置中任选出两个位置给B,C 且满足B在C前,则共有C⁶种选法, 剩下的3个位置必须按2,3,4的顺 序排列,所以总共有C⁶=10条路可 走;
 - (2)5个位置中任选出3个位置给2,3和 4且必须满足从小到大的顺序,则为 C⁶,剩下两个位置也必须按B在C的 前面这一顺序排列,所以共有C⁶=10 条路可走。
- 29. 没有共同成员的委员会 X 和委员会 Y 将 组合成委员会 Z。委员会 X 的成员比委员 会 Y 的成员多吗?
 - (1) X 委员会的成员的平均年龄为 25.7
 岁,Y 委员会的成员平均年龄为 29.3
 岁。
 - (2) Z 委员会成员的平均年龄将为 26.6岁。
 - 解:本题的正确答案为(C)。(1)不充分, 因为(1)只是给出了两个委员会成员 的各自平均年龄,而没有给出年龄与 成员数目之间的关系,所以无法判断 两个委员会的成员的多少;(2)同理 不能说明哪一个委员会的成员多; (1)+(2)充分,设X委员会的人数为

47

- m, Y委员会的人数为 n, 则 Z 委员 会的人数为 m+n, 根据题意可得: $\frac{25.7m+29.3n}{m+n}=26.6\Rightarrow$ $\frac{26.6(m+n)-0.9m+2.7n}{m+n}=26.6$ $\Rightarrow 0.9m=2.7n$ $\Rightarrow m=3n$ 委员会 X 的人数等于委员会 Y 的人 教 3 倍。
- 30. 若 n 是一个 正整数 (positive integer) 且
 k+2=3ⁿ,下列哪一个不可能是 k 的
 值?
- 解:本题的正确答案为(B)。由 k+2=3",可
 得 k=3"-2,3的幂的个位数以3,9,7,
 1 循环,所以 k 的个位数一定为1,7,5,
 9。因此 k 不可能取(B)中4。
- 31. 在一个公司中,40%的工人至少干了5年,且共有16个工人至少干了10年。若有90%的工人工作的时间不到10年,则工作时间至少在5年,但不到10年的工人有多少个?
- 解:本题的正确答案为(A)。这类题最好借助用 文氏图来解,根据题意可画出如下的文氏图:

从图中可以看出该题也即让考生求图中的 阴影部分所代表的人数,该公司的总工人 数为16÷10%=160人;所以工作5年以 上的工人数为:160×40%=64人,从而 可以得到工作时间在5年以上10年以下 的工人数为:64-16=48人。

- 30. If n is a positive integer and k+2=3ⁿ, which of the following could NOT be a value of K?
 - (A) 1
 - (B) 4
 - (C) 7
 - (D) 25
 - (E) 79
- **31.** In an office, 40 percent of the workers have at least 5 years of service, and a total of 16 workers have at least 10 years of service. If 90 percent of the workers have fewer than 10 years of service, how many of the workers have at least 5 but fewer than 10 years of service?
 - (A) 48
 - (B) 64
 - (C) 80
 - (D) 144
 - (E) 160

- **32.** What is the units digit of $(13)^4 (17)^2$ (29)³?
 - (A) 9
 - (B) 7
 - (C) 5
 - (D) 3
 - (E) 1
- 33. If n is an integer between 2 and 100 and if n is also the square of an integer, what is the value of n?
 - (1) n is the cube of an integer.
 - (2) n is even.

- **34.** What fractional part of the total surface area of cube C is red?
 - (1) Each of 3 faces of C is exactly $\frac{1}{2}$ red.
 - (2) Each of 3 faces of C is entirely white.

35. If n and p are different positive prime numbers, which of the integers n⁴, p³, and np has (have) exactly 4 positive divisors?

- 32. (13)⁴(17)²(29)³ 的个位数字(units digit)
 是多少?
- 解:本题的正确答案为(E)。根据本章中所讲述的整数 n次幂的个位数的数字特征,可知:

(13)⁴的个位数字为 1,
(17)²的个位数字为 9,
(29)³的个位数字为 9,
所以(13)⁴(17)²(29)³的个位数字为 1。

- 33. 若 n是 2 到 100 间的一个整数,且 n 又是
 一个整数的 平方 (square),那么 n 的值是
 多少?
 - (1) *n*是一个整数的立方(**cube**);

(2) n是一个偶数。

- 解:本题的正确答案为(A)。(1)充分,因为2到100之间的整数中,既是一个整数的平方又是一个整数的立方的数只有64,它既是8的平方,又是4的立方;
 (2)不充分,因为在2到100之间的整数中,是偶数又是一个整数的平方的数有多个:4=2²,16=4²,36=6²,64=8²。
- 34. 立方体 (cube) C 的红色部分占了该立方体 表面积的比例是多少?
 (1) C 的 3 个面中的每个面都有一半是红色;
 (2) C 中有 3 个面是全白色。
- 解:本题的正确答案为(C)。(1)不充分,因 为无法判断另3个面的具体情况;(2) 同理也不充分;(1)+(2)充分,根据此 条件可以求出红色所占的比例为:

$$\frac{3 \times \frac{1}{2}}{6} = \frac{1}{4} = 25\%$$

35. 若 n 和 p 是互不相同的 正质数 (positive prime number),则在 n⁴, p³ 和 np 这几个数哪一个数恰好有四个 正因子 (positive divisor)?

- (A) n^4 only
- (B) p^3 only
- (C) np only
- (D) n^4 and np
- (E) p^3 and np

36.

CREATE YOUR OWN SUNDAE 12 Ice Cream Flavors

- 10 Kinds of Candies
- 8 Liquid Toppings
- 5 Kinds of Nuts
- With or Without Whipped Cream

If a customer makes exactly one selection from each of the five categories shown in the table above, what is the greatest possible number of different ice cream sundaes that a customer can create?

(A) 9,600	(B) 4,800
(C) 2,400	(D) 800
(E) 400	

37. In how many different ways can 3 people be assigned to fill 3 different positions so that each person is assigned to exactly one position?

(A) Twelve	(B) Nine
(C) Six	(D) Three

- (E) One
- **38.** S is a set of integers such that

i) if a is in S. then -a is in S, and

ii) if each of a and b is in S, then ab is in S. Is-4 in S?

- (1) 1 is in S.
- (2) 2 is in S.

- 解:本题的正确答案为(E)。因为 n和 p 是互 不相同的质数,所以根据质因子求解公式 可得 n⁴ 和 p³ 的因子数分别为 4+1=5 个 和 3+1=4 个;而 np 的质因子则为 1, n, p和 np 共四个,所以 p³和 np 恰好都 有四个因子。
- 36. 若一顾客从上面表格所示的五类的每一类 中仅选出一种,那么该顾客最多可以创造 出多少种不同的冰淇淋圣代?
- 解:本题的正确答案为(A)。由表格可知,该 顾客在第一类中有 $C_{12}^{l}=12$ 种选法,在第 二类中有 $C_{10}^{l}=10$ 种选法,在第三类中有 $C_{6}^{l}=8$ 种选法,在第四类中有 $C_{6}^{l}=5$ 种选 法,在第五类中有 $C_{2}^{l}=2$ 种选法,所以一 共的选法为这五类不同选法的组合数: $C_{12}^{l} \times C_{10}^{l} \times C_{6}^{l} \times C_{2}^{l}=12 \times 10 \times 8 \times 5 \times 2 =$ 9,600

- 37. 把3个人分配给3个不同的职位,每个人 仅分配给一个职位,问有多少种不同的分 配方法?
- 解:本题的正确答案为(C)。把这三个职位固定为1,2,3,然后求这三个人有多少种不同的排列来占取这三个位置,其排列数为 P⁸₃=3×2×1=6,所以共有6种不同的分配方法。
- **38.** S是一个具有如下特征的整数集合:
 - i) 若 $a \in S 中$, 则-a也在 S 中。
 - ii) 若 a 和 b 中的每一个都在 S 中,则 ab 也在 S 中。
 - 问一4 在集合 S 中吗?
- 解:本题的正确答案为(B)。(1)不充分,因为 根据1在S中,只能推出一1也在S中,而

39. In each production lot for a certain toy, 25 percent of the toys are red and 75 percent of the toys are blue. Half the toys are size A and half are size B. If 10 out of a lot of 100 toys are red and size A, how many of the toys are blue and size B?

(A) 15	(B) 25
(C) 30	(D) 35

- (E) 40
- 40. When the integer k is divided by 12, the remainder is 3. Which of the following, when divided by 12, will have a remainder of 6?
 - I 2k
 - $\Pi 6k$
 - $\blacksquare 4k+6$
 - (A) I only (B) I only
 - (C) \blacksquare only (D) I and \blacksquare only
 - (E) $[\ , \] \ , \ and \]]$
- 41. For the positive numbers, n, n+1, n+2, n+4 and n+8, the mean is how much greater than the median?
 - (A) 0
 - (B) 1
 - (C) *n*+1
 - (D) *n*+2
 - (E) n+3

得不到有关-4的任何信息;(2)充分,根据2在S中,由i)可推知-2也在S中,再根据ii)可知2与-2的乘积-4也在S中。

- 39. 某一玩具每一批产品中都有 25%的玩具是 红色,75%的玩具是蓝色;一半的玩具是 A号的,一半的玩具是 B号的。若一批 100个的玩具中有 10个是红色 A型,则 有多少玩具是蓝色 B型?
- 解:本题的正确答案为(D)。由题意可知, 在这100个玩具中红色的玩具有25个, 蓝色的玩具有75个,根据100个玩具 中10个是红色A型,可推知红色B型 玩具是15个,而B型共50个,所以蓝 色B型有35个。
- **40.** 当整数 k 被 12 除时,其余数为 3。下列哪 一项被 12 除时,其余数等于 6?

解:本题的正确答案为(E)。根据题意可设k= 12m+3,其中 m是整数,则: 2k=2(12m+3)=12×2m+6 6k=6(12m+3)=12×(6m+1)+6 4k+6=4(12m+3)+6=12×(4m+1)+6 所以2k,6k和4k+6被12除时,余数都 是6。

- 41. 正数 n, n+1, n+2, n+4 和 n+8 的平均 数(mean)比其中数(median)大多少?
- 解:本题的正确答案为(B)。正数 n, n+1, n+2, n+4 和 n+8 和算术平均数为: $\frac{n+(n+1)+(n+2)+(n+4)+(n+8)}{5} = n+3$ 因为 n, n+1, n+2, n+4 和 n+8 都是正

数,所以n < n+1 < n+2 < n+4 < n+8,因此其中数为n+2。由上分析可得正数n, n+1, n+2, n+4和n+8的平均数比其中数大1。

	7	3 4	
	5		
+	9	2	
2,	2	4	

In the addition problem above, the number \Box must be

(A) 5	(B) (6
(C) 7	(D)	8

- (E) 9
- **43.** There are 4 card-processing machines in an office. The fastest of these machines processes *x* cards in 7 hours and the slowest processes *x* cards in 8 hours. Which of the following could NOT be the average time per machine for each of the 4 machines to process *x* cards?

(A) 7.2

- (B) 7.3
- (C) 7.5
- (D) 7.6
- (E) 7.7
- **44.** If a, b, and c are integers, is the number 3(a+b)-c divisible by 3?
 - (1) a+b is divisible by 3.
 - (2) c is divisible by 3.
- 45. If x and y are integers, is xy+1 divisible by 3?
 - (1) When x is divided by 3, the remainder is 1.
 - (2) When y is divided by 9, the remainder is 8.

- 42. 在左面的加法题中,数□一定是:
- 解:本题的正确答案为(B)。由上面的加法算 式可知,个位向十位进了一位,十位向百 位进了一位,所以根据加法原则,可得到 如下的式子:

 $3 + \Box + \Box + 1 = 10 + \Box$ $\Rightarrow \Box = 6$

- 43. 一个办公室中有4个卡片处理机器,其中 最快的可在7个小时内处理 x张卡片,最 慢的可在8个小时内处理 x张卡片。下列 哪一个不可能是4台机器每台都处理 x张 卡片的平均时间?
- 解:本题的正确答案为(A)。根据题意可知, 其余两台机器处理 x 张卡片所用的时间 t一定为:7≤t≤8。由此可知四台机器每台 都处理 x 张卡片的平均时间的最小值和最 大值分别为: $\frac{7+7+7+8}{4}$ = 7.25 小时和 $\frac{7+8+8+8}{4}$ = 7.75 小时

因此 7.2 落在了平均值之外,不可能 是这四台机器每台都处理 x 张卡片所用的 平均时间。

- **44.** 若 *a*, *b* 和 *c* 是整数,问 3(*a*+*b*)-*c* 能被 3 整除吗?
- 解:本题的正确答案为(B)。因为3(a+b)-c 能否被3整除,只与c能否被3整除有关, 所以(1)不充分,而(2)充分。
- 45. 若 x 和 y 是整数,那么 xy+1 能被 3 整除吗?
 (1) 当 x 被 3 除时,其余数为 1;

(2) 当 ν被 9 除时,其余数为 8。

解:本题的正确答案为(C)。因为 xy+1 能否

決于 y 的值,所以(1)和(2)单独都很明显 不充分;根据(1)+(2)可得: x=3m+1, y=9n+8, 其中 m, n 是整数。把这两个式子代入 <math>xy+1 可得: xy+1 = (3m+1)(9n+8)+1= 27mn+24m+9n+8+1= 3(9mn+8m+3n+3)

被3整除,不但取决于 r的值,而且还取

因此 xy+1 能被 3 整除,所以(1)+(2)充分。

- 46. 以一个质数(prime number)开头且以一个 质数结尾的3位数有多少个?
- 解:本题的正确答案为(C)。只有一位的正质 数有2,3,5,7四个,而要求的3位数 的首位和末位都是质数,且中间的十位数 可为0至9中10个数中的任一个,因此 具有这种特征的3位数共有:

 $C_4^1 \cdot C_{10}^1 \cdot C_4^1 = 160$

- 47. 在大于 10 且小于 100 的整数中有多少个 *n*,若将 *n* 的位数颠倒,所得的数字为 *n*+9?
- 解:本题的正确答案为(D)。设 n 的个位数字 为 a, 十位数字为 b, 则

n=10b+a

根据题意得:10b+a+9=10a+b

a-b=1

即个位数字比十位数字大1。满足此 特征的数字有12,23,34,45,56,67, 78,89 共 8 个数字。

- 48. 正整数 n等于一个整数的平方(square)吗?
 (1) 对于每一个质数 p来说,若 p是 n的 一个因 子,则 p² 也是 n的一个因子;
 (2) √n 是一个整数。
- 解:本题的正确答案为(B)。(1)不充分,因为 p^2 有可能等于 n,也有可能不等于 n;(2) 充分,因为 \sqrt{n} 是整数,则 n 就是整数 \sqrt{n} 的平方。

- **46.** How many three-digit numerals begin with a digit that represents a prime number and end with a digit that represents a prime number?
 - (A) 16 (B) 80
 - (C) 160 (D) 180
 - (E) 240
- 47. How many integers n greater than 10 and less than 100 are there such that, if the digits of n are reversed, the resulting integer is n+9?
 - (A) 5
 - (B) 6
 - (C) 7
 - (D) 8
 - (E) 9
- **48.** Is the positive integer *n* equal to the square of an integer?
 - For every prime number p, if p is a divisor of n, then so is p².
 - (2) \sqrt{n} is an integer

- 49. If x and y are positive integers and x is a multiple of y, is y=2?
 - (1) y≠1
 - (2) x+2 is a multiple of y.

50.

3.2

If \Box and \triangle each represent single digits in the decimal above, what digit does \Box represent?

- When the decimal is rounded to the nearest tenth, 3.2 is the result.
- (2) When the decimal is rounded to the nearest hundredth, 3. 24 is the result.
- **51.** Three stacks containing equal numbers of chips are to be made from 9 red chips, 7 blue chips, and 5 green chips. If all of these chips are used and each stack contains at least 1 chip of each color, what is the maximum number of red chips in any one stack?

(A)	7	(B) 6	(C)	5
(D)	4	(E) 3		

49. 若 x 和 y 都是正整数, 且 x 是 y 的倍数, y等于 2 吗?

- 解:本题的正确答案为(C)。(1)不充分,因为 满足 y不等于1,且 x是 y的倍数的 y有 无穷多个,此时 y既可以等于2,也可以 不等于2;根据(2)可设 x+2=ny,由 x 足 y的倍数可设 x=my,其中 m和 n都 是正整数,把这两个式子相减可得(nm)y=2,因为 n-m和 y都是正整数,所 以当 n-m取1时,y取2,当n-m取2 时,y取1,因此(2)也不充分;根据以上 分析可知(1)+(2)时,y=2,所以(1)+ (2)充分。
- **50.** 若□和△每一个都表示上面小数字中的一 位数字,那么□代表多少?
 - (1)当该小数近似到十分位时,其结果是3.2;
 - (2)当该小数近似到百分位时,其结果是3.24。
- 解:本题的正确答案为(E)。根据(1)只能得到
 □是一个比5小的数,所以(1)不充分;
 因为根据(2)并不知道△是否大于5,所以
 也无法判断□究竟代表3,还是代表4,
 因而(2)也不充分。
- 51.3堆相同数目的筹码由9个红色筹码、7 个蓝色筹码和5个绿色筹码组成。若所有 这些筹码都被使用,且每堆中至少含有每 种颜色中的一个筹码,任一堆中红色筹码 的最大数目是多少?
- 解:本题的正确答案为(C)。因为筹码的总数 为9+7+5=21,所以每堆中有7个筹码; 又因为每堆中至少有每种颜色的一个筹码,所以在任一堆中红色筹码最多为5 个,蓝色筹码最多为5个,绿色筹码最多为3个。

52. A computer is programmed to generate a list of multiples of prime numbers 2, 3 and 5, as shown below:

Program 1 —	List	multiples	of	2
Program 2 —	List	multiples	of	3
Program 3 —	List	multiples	of	5

How many integers less than 100 will appear on all of the lists of programs produced above?

(A)	None	(B)	1
(C)	3	(D)	5

(E) An infinite number of integers

- **53.** All trainees in a certain aviator training program must take both a written test and a flight test, If 70 percent of the trainees passed the written test, and 80 percent of the trainees passed the flight test, what percent of the trainees passed both tests?
 - (1) 10 percent of the trainees did not pass either test.
 - (2) 20 percent of the trainees passed only the flight test.

- 52. 一个计算机被编程用以产生一组质数 2, 3,5的倍数(multiple)。如下所示: 程序1列出2的倍数, 程序2列出3的倍数, 程序3列出5的倍数。
 问有多少小于100的整数将出现在上面所 有程序所产生的数列中?
- 解:本题的正确答案为(C)。此题目也即问在 小于100的整数中有多少数同时是2,3, 5的倍数。因为2,3,5互质,所以小于 100的2,3,5的公倍数为30,60,90。
- 53. 参加某一飞行员培训计划的所有受训练者 都必须参加一个书面考试和一个飞行测 验。若70%的受训练者通过了书面考试, 且有80%的受训练者通过了飞行测试,问 有百分之多少的人通过了两项测试?
 (1)10%的受训练者未通过任一测试;
 (2)20%的受训练者仅通过了飞行测试。
- 解:本题的正确答案为(D)。该题可通过文氏 图来解:

从图中可知,当有10%的人未通过任 一测试时,将有90%的人至少通过了两项 测试中的某一项,所以两项都通过的人所 占的比例为(70%+80%-90%)=60%, 所以(1)充分;通过飞行测试的人由两部 分组成,其一是仅通过飞行测试的人,其 二是通过两项测试的人,因此当仅通过飞 行测试的人占20%时,两项测试都通过的 人所占的比例为80%-20%=60%,所以 (2)也是充分的。

- **54.** If *n* is an integer, is $\frac{n}{15}$ an integer?
 - (1) 3n/15 is an integer.
 (2) 8n/15 is an integer.

55. A jar contains only x black balls and y white balls. One ball is drawn randomly from the jar and is not replaced. A second ball is then drawn randomly from the jar. What is the probability that the first ball drawn is black and the second ball drawn is white?

(A)
$$\left(\frac{x}{x+y}\right) \left(\frac{y}{x+y}\right)$$

(B) $\left(\frac{x}{x+y}\right) \left(\frac{x-1}{x+y-1}\right)$
(C) $\frac{xy}{x+y}$
(D) $\left(\frac{x-1}{x+y}\right) \left(\frac{y-1}{x+y}\right)$
(E) $\left(\frac{x}{x+y}\right) \left(\frac{y}{x+y-1}\right)$

56. Ben and Ann are among 7 contestants from which 4 semifinalists are to be selected. Of the different possible selections, how many contain neither Ben nor Ann?

(A) 5	(B) 6
-------	-------

- (C) 7 (D) 14
- (E) 21

- **54.** 若 *n* 是一个整数, $\frac{n}{15}$ 是一个整数吗?
 - (1) $\frac{3n}{15}$ 是一个整数; (2) $\frac{8n}{15}$ 是一个整数。
- 解:本题的正确答案为(B)。(1)不充分,因为 很明显由 ⁿ/₅是一个整数无法推出 ⁿ/₁₅是一 个整数;因为 15 和 8 互质,所以若 n不 能被 15 整除,则 8n也不能被 15 整除, 反过来由 8n能被 15 整除,则 n中一定含 有 15 这个因子,也即 n能被 15 整除,ⁿ/₁₅ 是一个整数,所以(2)是充分的。
- 55. 一罐子中仅含有 x个黑球和 y个白球。从 该罐子中随机地取出一个球且不放回,然 后再从罐子中随机取出第二个球。问取出 的第一个球为黑色且第二个球为白色的概 率是多少?
- 解:本题的正确答案为(E)。第一次为黑球的 概率是 $\frac{x}{x+y}$,第二次为白球的概率是 $\frac{y}{(x+y-1)}$,因此第一次为黑球而第二次 为白球的概率为:

$$\left(\frac{x}{x+y}\right)\left(\frac{y}{(x+y-1)}\right)$$

- 56. 从包括 Ben 和 Ann 在内的 7 名参赛者中选 出 4 名半决赛选手。问不包括 Ben 和 Ann 的选择一共有多少种?
- 解:本题的正确答案为(A)。7人中若不包括 B和A则剩下5人,因此本题也即为求从 5人中选出4人的可能性有多少种,根据 组合的基本概念可知共有C⁵=5种可能的 选择。

57. On a recent trip, Cindy drove her car 290 miles, rounded to the nearest 10 miles, and used 12 gallons of gasoline, rounded to the nearest gallon. The actual number of miles per gallon that Cindy's car got on this trip must have been between

(A)
$$\frac{290}{12.5}$$
 and $\frac{290}{11.5}$
(B) $\frac{295}{12}$ and $\frac{285}{11.5}$
(C) $\frac{285}{12}$ and $\frac{295}{12}$
(D) $\frac{285}{12.5}$ and $\frac{295}{11.5}$
(E) $\frac{295}{12.5}$ and $\frac{285}{11.5}$

- 58. In a certain group of people, the average (arithmetic mean) weight of the males is 180 pounds and of the females, 120 pounds. What is the average weight of the people in the group?
 - The group contains twice as many females as males.
 - (2) The group contains 10 more females than males.

- **59.** How many integers *n* are there such that r < n < s?
 - (1) s r = 5
 - (2) r and s are not integers.

- 57. Cindy 在一次最近的旅行中开车行驶 290 英里,四舍五入到 10 英里(rounded to the nearest 10 miles),消耗汽油 12 加仑(四舍 五入到加仑数)。 Cindy 在此旅途中每加仑汽油所行驶的英 里数一定在下列哪一项的范围之内?
- 解:本题的正确答案为(D)。to the nearest 指 四舍五入,根据四舍五入的定义,可知C 开车的实际英里数应在285至295英里之 间,而使用的汽油加仑数应在11.5至 12.5加仑之间,所以Cindy每加仑汽油所 行驶的英里数的范围应在最小英里数除以 最大加仑数与最大英里数除以最小加仑数 之间,即:

$$\frac{285}{12.5}$$
 $\frac{295}{11.5}$

58. 在某一群人中,男性的平均体重(算术平均)是180磅,女性的平均体重是120磅。
问这群人的平均体重是多少?
(1)该群人中女性人数是男性人数的两倍;
(2)该群人中的女性比男性多10人。

解:本题的正确答案为(A)。设该群人中的男

H. 并之的工机音采为(11)。((((本)))((+))) 性人数为 x,则根据(1)可得女性人数为 2x,从而可求得这群人的平均体重为:

 $\frac{180x+120\times 2x}{x+2x}$ =140 磅,所以(1)充分;根 据(2)可得女性人数为 x+10,则这群人的平 均体重可表示为: $\frac{180x+120(x+10)}{x+(x+10)}$,因为 这个式子的值随 x 值的变化而变化,所以 (2)不充分。

- **59**. 满足 r<n<s 的正整数 n 有多少?
 - (1) s = r = 5;
 - (2) r和 s不是整数。
- 解:本题的正确答案为(C)。(1)不充分,因为 若 s, r为整数时,则根据 s-r=5 可推知有 4 个正整数 n满足 r<n<s,若 s, r为小数</p>

- 60. Bowls X and Y each contained exactly 2 jelly beans, each of which was either red or black, One of the jelly beans in bowl X was exchanged with one of the jelly beans in bowl Y. After the exchange, were both of the jelly beans in bowl X black?
 - Before the exchange, bowl X contained 2 black jelly beans.
 - (2) After the exchange, bowl Y contained1 jelly bean of each color.

- 61. If k and n are integers, is n divisible by 7? (1) n-3=2k
 - (2) 2k-4 is divisible by 7.

- 62. If 1<d<2, is the tenths' digit of the decimal representation of d equal to 9?
 - (1) $d+0.01 \le 2$
 - (2) d+0.05>2

时,则有 5 个正整数 n满足 r < n < s; 仅仅 知道 $r \rightarrow s$ 不是整数也不能充分地回答上述 问题; (1)+(2)充分,因为根据此条件可 以得到有且仅有 5 个正整数满足 $r < n < s_o$

- 60. 碗 X 和 Y 中每个都装有两个果冻豆,这 些果冻豆要么为红色要么为黑色。碗 X 中 的一个果冻豆与碗 Y 中的一个果冻豆相交 换。交换之后,碗 X 中的两个果冻豆都是 黑色吗?
 - (1)交换之前,碗X中有两个黑色果冻豆;
 - (2) 交换之后,碗Y中含每种颜色的果冻 豆各一个。
- 解:本题的正确答案为(E)。(1)不充分,因为 Y碗中的果冻豆的颜色未知;(2)同理也推 不出交换之后碗X中含有的果冻豆的颜色; (1)+(2)同样无法回答上面的问题,因为 交换前Y碗中的果冻豆的颜色未知。
- **61**. 若 k 和 n 是整数,问 n 能被 7 整除吗?
- 解:本题的正确答案为(C)。由(1)可得 n=2k
 +3,根据此式无法判断 n是否能被 7 整
 除,所以(1)不充分;(2)中的 2k-4 与 n
 无关,所以很明显(2)也不充分;(1)+
 (2)充分,因为 2k-4 能被 7 整除,所以
 (2k-4)+7 也能被 7 整除,即 2k+3 能被
 7 整除,再根据(1)中的 n=2k+3 可得 n
 能被 7 整除。
- **62.** 若 1<*d*<2, 那么 *d* 所代表的小数的十分 位(tenths' digit)上的数等于 9 吗?
- 解:本题的正确答案为(B)。由(1)可得 1< d<1.99,根据这个不等式无法判断 d 所 代表的小数的十分位上的数是否等于 9, 所以(1)不充分;根据(2)可得 d 的取值范 围为 1.95<d<2,由此不等式可知,d所 代表的小数的十分位上的数一定是 9。

63. If 10 persons meet at a reunion and each person shakes hands exactly once with each of the others, what is the total number of handshakes?

(A) 10 • 9 • 8 • 7 • 6 • 5 • 4 • 3 • 2 • 1
(B) 10 • 10
(C) 10 • 9
(D) 45
(E) 36

64. Any decimal that has only a finite number of nonzero digits is a terminating decimal. For example, 24, 0. 82, and 5. 096 are three terminating decimals. If r and s are positive integers and the ratio $\frac{r}{s}$ is expressed as a decimal, is $\frac{r}{s}$ a terminating

decimal?

- (1) 90 < r < 100
- (2) s=4
- **65.** Is the integer n a multiple of 140?
 - (1) n is a multiple of 10.
 - (2) n is a multiple of 14.

- **66.** What is the greatest common divisor of positive integers *m* and *n*?
 - (1) m is a prime number.

- 63. 若 10 个人在一次聚会中相遇,每人与其他的每一个恰好握一次手,则握手的总数是多少?
- 解:本题的正确答案为(D)。此题即为求从10 个人中任取两人的所有不同取法,根据组 合方法的知识,可知他们握手的次数为 C²₁₀=45。
- 64. 仅有有限个非零数字的任何小数都是有限 小数(terminating decimal)。例如: 24, 0.
 82 和 5.096 是 3 个有限小数。若 r 和 s 是 正整数且以小数的形式来表示比率^r_s,问

 $\frac{r}{2}$ 是有限小数吗?

- 解:本题的正确答案为(B)。"terminating decimal"是"有限小数"。(1)不充分,因为在不知道s值的情况下根据90<r<100 无法说明<u>r</u>是否为有限小数;(2)充分,因为 s=4,已知 r 是正整数,而任何整数都可以被4 除尽。
- 65. 整数 n是 140 的倍数吗?
 (1) n是 10 的倍数;
 (2) n是 14 的倍数。
- 解:本题的正确答案为(E)。(1)和(2)单独都 明显不充分,有些考生会认为(1)+(2)充 分,他们认为n能被10整除,能被14整 除,那么n就能被10与14的乘积整除。 其实不然,只有在10和14这两个数互质 的情况下,才能断定n能被10与14的乘 积整除。而10和14明显不互质,他们有 公约数2,所以不能断定n是否能被140 整除。但根据(1)+(2)可以断定,n可以 被2×5×7=70整除。
- 66. 正整数 m和 n的最大公约数(the greatest common divisor)是多少?
 (1) m是一个质数(prime number);

59

(2) m and n are consecutive integers.

- 67. If n is a positive integer, is the value of b a at least twice the value of $3^n 2^n$?
 - (1) $a=2^{n}+1$ and $b=3^{n}+1$
 - (2) n=3

- 68. If x is an integer, is (x+p)(x+q) an e-ven integer?
 - (1) q is an even integer.
 - (2) p is an even integer

- **69.** How many people are directors of both Company K and Company R?
 - There were 17 directors present at a joint meeting of the directors of Company K and Company R, and no directors were absent.

- (2) m 和 n 是 连续整数(consecutive integers)。
- 解:本题的正确答案为(B)。根据(1)无法判定 m、n的最大公约数,因为n既有可能是 m的倍数,此时最大公约数为m;也有可 能与m是互质数,此时最大公约数为1; (2)m、n为连续正整数则必然互质,可以 得到他们的最大公约数为1。
- **67.** 若 *n* 是一个 *正整数* (**positive integer**),则 *b*-*a*的值至少是 3^{*n*}-2^{*n*} 的 2 倍吗?
- 解:本题的正确答案为(A)。(1)充分,根据 (1)可得:

$$b-a = 3^{n+1} - 2^{n+1} = 3 \times 3^n - 2 \times 2^n$$
$$= 3^n + 2(3^n - 2^n)$$

所以

$$\frac{b-a}{3^n-2^n} = \frac{3^n+2(3^n-2^n)}{3^n-2^n} = \frac{3^n}{3^n-2^n} + 2 > 2$$

- (2) 不充分,虽然根据 n=3 可以得到 3"-2"=19,但因 a和b的值是不确 定的,所以 b-a的值与 3"-2" 之间 的关系不能确定。
- **68.** 若 *x* 是一个整数,那么(*x*+*p*)(*x*+*q*)是一个偶数吗?
 - (1) q是一个偶数;
 - (2) *p*是一个偶数。
- 解:本题的正确答案为(E)。因为不管是 q 是 偶数还是 p 是偶数,都无法得到 x 是否为 偶数,从而(x+p)或(x+q)是否为偶数也 无从得知,因此(1),(2)以及(1)+(2)都 无法确定(x+p),(x+q)中是否至少有一 个是偶数。
- **69.** 有多少人既是 K 公司的理事又是 R 公司的理事?
 - (1) 有 17 个理事参加公司 K 和公司 R 的 联合理事会,并且没有理事缺席;
 - (2) 公司 K 有 12 个理事, 公司 R 有 8 个 理事。

(2) Company K has 12 directors and Company R has 8 directors.

- 70. Can the positive integer p be expressed as the product of two integers, each of which is greater than 1?
 - (1) 31<*p*<37
 - (2) *p* is odd
- **71.** If a sequence of 8 consecutive odd integers with increasing values has 9 as its 7th term, what is the sum of the terms of the sequence?
 - (A) 22(B) 32(C) 36(D) 40(E) 44
- 72. If S is the sum of the first *n* positive integers, what is the value of *n*?
 - (1) S<20
 - (2) $S^2 > 220$

- **73.** What is the probability that events A and B both occur?
 - The probability that event A occurs is
 0.8.

- 解:本题的正确答案为(C)。根据(1)中知道两 公司理事的和为 17 人,而无法判断公司 R和公司 K理事的交集;根据(2)只知道 两个公司各有多少个理事,所以也无法判 断也两公司理事的交集;(1)+(2)可以得 到既是 K 公司又是 R 公司的理事的人有 12+8-17=3 人
- **70.** 正整数 *p* 能表示成两个大于 1 的整数的乘 积吗?
- 解:本题的正确答案为(A)。由(1)可得 p的 取值可以为 32,33,34,35,36,这五 个整数都可表示成两个大于1的整数的乘 积的形式,所以(1)充分;因为奇数既可 能是质数也可能是合数,所以(2)不充分。
- 71. 若一个递增(increasing values)的连续奇数
 数列(sequence)中有 8 个元素,且其第 7 项是 9,那么下列哪一个是该数列各项的和?
- 解:本题的正确答案为(B)。根据第7项为9
 可以得到该数列的最大项为11,最小项为
 -3,所以此数列的和为:

 $-3 + -1 + 1 + 3 + \dots + 11 = 32$

- **72.** 若 S 是前 *n* 个正整数的和,那么 *n* 的值是 多少?
- 解:本题的正确答案为(C)。当 S<20 时,S 的取值范围较大,因此 n的取值是不确定 的,有好几个,所以(1)不充分;根据(2) 同样无法得到确定的 n值;根据(1)+(2) 可得 S 的取值范围为 $\sqrt{220} < S < 20$,虽然 S 的值是不确定的,但只有当 n=5时才满 足上面的不等式,也即 n的值惟一,所以 (1)+(2)能充分地回答上面的问题。
- 73. 事件 A 和事件 B 都出现的 概率 (probability) 是多少?
 (1) 事件 A 发生的概率是 0.8;
 (2) 事件 B 发生的概率是 0.6。

- (2) The probability that event B occurs is0.6.
- 74. If p and q are positive integers, what is the value of q?
 - (1) $q^{p-1} = 1$
 - (2) p=1
- **75.** Are there exactly 3 distinct symbols used to create the code words in language Q?
 - The set of all code words in language Q is the set of all possible distinct horizonal arrangements of one or more symbols, with no repetition.
 - (2) There are exactly 15 code words in language Q.

76. If M and N are positive integers that have remainders of 1 and 3, respectively, when divided by 6, which of the following could NOT be a possible value of M+ N?

(A) 86	(B) 52	(C) 34
(D) 28	(E) 10	

77. An even number x divided by 7 give some quotient plus a remainder of 6. Which

- 解:本题的正确答案为(E)。(1)和(2)单独都 明显不充分;但由于不知道事件 A 与事 件 B 是相互独立事件,还是相关事件或 是排斥事件,因此无法计算 A 和 B 都发 生的概率,所以(1)+(2)也不充分。
- **74.** 若 *p* 和 *q* 是*正整数*(**positive integer**),问 *q* 的值是多少?
- 解:本题的正确答案为(E)。由(1)可得,当 p
 ≠1时,q只能等于1,而当 p=1时,q
 可以取任意值,所以(1)不充分;同理(2)
 以及(1)+(2)也都不充分。
- **75.** 用于创造出语言 Q 中的密码的不同符号恰 好有 3 个吗?
 - (1)语言Q中的所有密码单词的集合是一 个或多个符号的所有可能的水平排 列,且没有重复。
 - (2) 语言 Q 中恰好有 15 个密码单词。
- 解:本题的正确答案(C)。根据(1)无法判断出 语言 Q 是否仅有 3 个不同的符号;(2)只 是说明了语言 Q 中有 15 个密码单词,但 不知道这些密码单词是如何排列的,因此 (2)不充分;(1)+(2)充分,因为 3 个不 同的符号恰好可构成 15 个水平排列的密 码单词,一个符号的有 3 个,两个符号的 有 $P_s^2 = 6$ 个,3 个符号的有 $P_s^3 = 6$ 个,所 以共有 15 个。
- 76. 若 M 和 N 是正整数且被 6 除时余数 (remainder)分别为 1 和 3,那么下列哪一个 不可能是 M+N的值?
- 解:本题的正确答案为(A)。根据题意 M和 N 可分别表示为:

M=6m+1, N=6n+3 $\Rightarrow M+N=6(m+n)+4$

5个选项中只有86被6除时,余数为2。

77. 一个偶数 *x* 被 7 除时的结果为某个 *商* (quotient)值再加上余数(remainder)6。问

of the following, when added to x, gives a sum which must be divisible by 14?

(A) 1	(B) 3	(C) 7
(D) 8	(E) 13	

- 78. If the two-digit integers M and N are positive and have the same digits, but in reverse order, which of the following CANNOT be the sum of M and N?
 - (A) 181
 (B) 165
 (C) 121
 (D) 99
 (E) 44
- **79.** If $n = \frac{p}{q}$, where p and q are nonzero integers, is n an integer?
 - (1) n^2 is an integer.
 - (2) $\frac{2n+4}{2}$ is an integer.

- **80.** If *x* is the product of three consecutive positive integers, which of the following must be true?
 - I. x is an integer multiple of 3.

下面哪一个数加上 *x* 后所得的和一定能被 14 整除?

- 解:本题的正确答案为(D)。设 x 被 7 除时的 商值为 m,其中 m 为整数,则根据题意 有:x=7m+6。又因为 x是偶数,所以 m也一定是一个偶数,设 m=2n,其中 n 为 整数,则 x 还可表示为:x=14n+6,由 此式可知,当 x 与 8 相加时,其结果为 x=14(n+1)一定能被 14 整除。
- 78. 若 M 和 N 是 两位 正 整数 (two-digit integers), 且具有相同的数字, 但是顺序相 反。下列哪一个不可能是 M 与 N 的和?
- 解:本题的正确答案为(A)。设 M的个位为 a, 十位为 b,则 M=10b+a,同理 N=10a+
 b,则 M+N=11(a+b)。因此不是 11 的
 倍数的数都不可能等于 M与 N 的和,在
 5个选项中很显然(A)中 181 不是 11 的倍数。
- **79.** 若 $n = \frac{p}{q}$,其中p和q是非零整数(nonzero integers),那么n是一个整数吗? (1) n^{2} 是一个整数; (2) $\frac{2n+4}{2}$ 是一个整数。
- 解:本题的正确答案为(D)。由 $n=\frac{p}{q}$ 可知, n 是一个有理数。若有理数的平方是一个整 数,则该有理数也一定是一个整数,因此 由 n^2 是一个整数可推知 n-cc是一个整 数,所以(1)充分; 由 $\frac{2n+4}{2} = n+2$ 是一 个整数可推知 n必然也是一个整数(两个 整数相加减,其结果必为整数)。所以(2) 也能充分地说明 n是一个整数。
- 80. 若 x是三个 *连续正整数* (consecutive positive integers)的乘积,则下面哪一项一定正确?
 I. x 是一个三的 整倍数 (integer multiple);

- II. x is an integer multiple of 4.
- III. x is an integer multiple of 6.
- (A) I only
- (B) **∏** only
- (C) \ensuremath{I} and \ensuremath{I} only
- (D) I and II only
- (E) $[\ , \] \ ,$ and $[] \]$

- **81.** How many of the integers between 25 and 45 are even?
 - (A) 21
 - (B) 20
 - (C) 11
 - (D) 10
 - (E) 9
- 82. A necklace is made by stringing N individual beads together in the repeating pattern red bead, green bead, white bead, blue bead, and yellow bead. If the necklace design begins with a red bead and ends with a white bead, then N could equal (A) 16

- Ⅱ. x是一个四的整倍数;
- Ⅲ. x 是一个六的整倍数。
- 解:本题的正确答案为(D)。设这三个连续正 整数为 n-1, n, n+1, 若 n-1 能被 3 整 除时,则这三个连续整数的乘积也一定能 被3整除, 当 n-1 不能被3整除时, 其余数有两种情况,等于1或等于2,当其 余数为1时,则比n-1大1的n-定能 被3整除,当其余数为2时,则 n+1-定能被3整除,总之这三个连续整数中一 定有一个数是3的倍数,所以他们的乘积 也一定能被3整除;连续整数都奇偶相 间,这三个连续整数要么呈偶奇偶排列, 要么呈奇偶奇排列,在第一种情况下他们 的乘积一定能被4整除,在第二种情况 下,他们的乘积一定能被2整除,总之这 三个连续整除的乘积一定能被2整除,但 不一定能被4整除。综上所述,三个连续 整数的乘积一定是2和3的倍数,但因为 2与3是互质数,所以三个连续整数的乘 积也一定是6的倍数。
- 81. 25 和 45 之间有多少个偶数?
- 解:本题的正确答案为(D)。25 与 45 之间的 偶数形成一个首项为 26,末项为 44,公 差为 2 的等差数列,所以可以按等差数列 的公式 a_n = a₁ + (n-1)d,来求其偶数的 个数:

$$n = \frac{a_n - a_1}{d} + 1 = \frac{44 - 26}{2} + 1 = 10$$

注:考生遇到这类题都可以用这种方法进 行快速准确地解答。

- 82. 一个项链由 N 个不同的珠子串起来而制成,珠子按红色、绿色、白色、蓝色和黄色的模式重复排列。
 若项链的设计以红色珠子开始且以白色珠子结束,则 N 可以等于多少?
- 解:本题的正确答案为(E)。因为白色珠子位 于第三个位置,所以 N的值应满足:

- (B) 32
- (C) 41
- (D) 54
- (E) 68
- 83. If x and y are integers and xy=5, then $(x+y)^2 =$
 - (A) 13
 - (B) 16
 - (C) 25
 - (D) 26
 - (E) 36
- 84. The average (arithmetic mean) of 3 different positive integers is 100 and the largest of these 3 integers is 120, what is the least possible value of the smallest of these 3 integers?
 - (A) 1
 - (B) 10
 - (C) 61
 - (D) 71
 - (E) 80
- **85.** If S is an infinite set of real numbers, is there a number in S that is less than every other number in S?
 - (1) Every number in S is an integer.
 - (2) Every number in S is positive.

也即在只有被5除余数为3的数才可能等 于 N。在5个选项中,只有68=5×13+ 3满足条件。

- 83. 若 $x \neq x$ $y \neq x$ 2 x = 5, 那 么 $(x+y)^2 =$
- 解:本题的正确答案为(E)。因为 x和 y 是整数,所以由 xy=5 可得, x和 y 可同时取正整数,也可同时取负整数。当他们同时取正整数时,一个取 1,则另一个取 5;当他们同时取负整数时,一个若取-1,则另一个取-5。但不管他们同时取正,还是同时取负,(x+y)²的值都是 36。
- 84. 三个不同连续正整数的算术平均值是 100, 且三个数中最大的一个整数是 120,问这 三个数中最小数的最小值(the least possible value)是多少?
- 解:本题的正确答案为(C)。其余两个数的和 为3×100-120=180,要使最小数尽可 能地小,就应使另一个数尽可能地大,但 因为三个数中的最大数是120,所以第二 大的数最大只能取119,因此最小数的最 小可能值为180-119=61。
- 85. 若 S 是一个实数的无限集合 (infinite set), 那么 S 中有数字小于 S 中的其他每个数字 吗?
 - (1) S中的每个数字都是整数
 - (2) S中的每个数字都是正数
- 解:本题的正确答案为(C)。该题也即让考生 求集合 S 中存在最小元素的充分条件。 (1)不充分,因为 S 中的数可以为正整数, 也可以为负整数,所以集合 S 中不存在最 小值;(2)也不充分,因为最小的正数也 是不存在的;(1)+(2)充分,因为此时集 合 S 是一个所有正整数的集合,而最小的 正整数为 1。

86. If x, y, and z are single-digit integers and 100(x)+1,000(y)+10(z) = N, what is the units' digit of the number N?

- (A) 0
- (B) 1
- (C) *x*
- (D) y
- (E) z
- **87.** How many two-digit whole numbers yield a remainder of 1 when divided by 10 and also yield a remainder of 1 when divided by 6?
 - (A) None
 - (B) One
 - (C) Two
 - (D) Three
 - (E) Four
- 88. If P is a set of integers and 3 is in P, is every positive multiple of 3 in P?(1) If x is in P, then x+3 is in P.
 - (2) If x is in p, then x-3 is in p.

- 89. If w, x, y, and z are non-negative integers, each less than 3, and $w(3^3) + x(3^2)$ + y(3) + z = 34, then w + z =
 - (A) 0
 - (B) 1
 - (C) 2
 - (D) 3

- 86. 若 x, y和 z 是一位整数,且 100(x)+
 1,000(y)+10(z)=N,问 N 的个位数是
 多少?
- 解:本题的正确答案为(A)。根据数的构成法则 以及题设条件很容易写出 N 这个数为 yxz 0,所以 N 的个位数上的数很明显就是 0。
- 87. 被 10 除时余数为 1, 被 6 除时余数也为 1
 的 两位整数(two-digit whole number)有多
 少个?
- 解:本题的正确答案为(D)。被10除时余1, 被6除时也余1的两位数就是被10和6 的最小公倍数除也余1的数,10和6的 最小公倍数是30,而被30除余1的两位 数有3个,即为31,61和91,所以被10 除时余数为1,被6除时余数也为1的两 位整数也是3个。
- **88.** 若 P 是一个整数集合,且包含 3,那么 3 的每个*正倍数* (**positive multiple**)都在 P 中 吗?
 - (1) 若 *x* 在 P 中,则 *x*+3 也在 P 中
 (2) 若 *x* 在 P 中,则 *x*-3 也在 P 中
- 解:本题的正确答案为(A)。由(1)中 x 在 P 中则 x+3 也在 P 中,可推知若 3 在 P 中 则每个 3 的正倍数都在 P 中,所以(1)能 充分地回答题目中的问题;由(2) x 在 P 中,则 x-3 也在 P 中,只能推出若 3 在 P 中,则 0 在 P 中,而无法判断 3 的正整 数倍数是否在 P 中。
- 89. 若 w, x, y和 z均为小于 3 的非负(non-neg-ative)整数,且 w(3³)+x(3³)+y(3)+z=34,那么 w+z=
- 解:本题的正确答案为(C)。根据 w, x, y和 z 都是小于 3 的非负整数可知它们的取值范 围为 0, 1, 2。仔细观察发现 w 前的系数 等于 27, 对等式左边值的大小影响较大,
- **90.** What is the remainder when the positive integer x is divided by 2?
 - (1) x is an odd integer.
 - (2) x is a multiple of 3.

- **91.** If the sum of a set of ten different positive prime numbers is an even number, which of the following prime numbers CANNOT be in the set?
 - (A) 2
 - (B) 3
 - (C) 5
 - (D) 7
 - (E) 11

Questions 92—93 refer to the following definition.

92. For any positive integer n, n>1, the "length" of n is the number of positive primes (not necessarily distinct) whose product is n. For example, the length of 50 is 3 since 50=(2)(5) (5)

Which of the following integers has length 3? (A) 3

- (B) 15
- (C) 60

(D) 64

若 w=0时, x, y和 z都取最大值 2 也不 能使题目所给出的式子成立;若 w=2 时, 即使 x, y和 z都取最小值 0 也不能满足 等式。因此 w只能取 1。此时题目中的等 式可化为:

9x + 3y + z = 7

则 x=0, y=2, z=1 时上面等式成立, 因此 w+z=2。

- 90. 当正整数 x 被 2 除时,其余数是多少?
 (1) x 是一个偶数;
 (2) x 是一个 3 的倍数。
- 解:本题的正确答案为(A)。因为偶数都是2 的倍数,所以当 x是偶数被2除时,其余 数为0,所以(1)充分;(2)不充分,因为 3的倍数即有可能被2整除(如6),也有 可能不能被2整除(如9)。
- 91. 若一集合中 10 个不同的 正质数 (prime number)的和是一个偶数,则下列哪一个 质数不是该集合 (set)中的数?
- 解:本题的正确答案为(A)。根据本章前一部 分的综述,可知偶数个奇数和是偶数。在 五个选项中惟一是偶数的质数是2,若2 在此集合中必有9个奇数在该集合中,其 和必是一个奇数。

问题 92—93 参照下列定义

- 92. 对于任何大于1的正整数(positive integer) n,其 "length"是乘积等于 n的质数的数 目(并不一定要相互不同)。例如: 50 的 "length"是3,因为50=(2)(5)(5)。 下列哪个整数的"length"是3?
- 解:本题的正确答案为(E)。根据题目中的定 义可知:
 - (A)的 length 等于1;
 - (B)的 length 等于 2, 因为 15=3×5;
 - (C)的 length 等于 4, 因为 60=2×2×3×5;

(E) 105

- **93.** What is the greatest possible length of a positive integer less than 1,000?
 - (A) 10
 - (B) 9
 - (C) 8
 - (D) 7
 - (E) 6
- **94.** A company that ships boxes to a total of 12 distribution centers uses color coding to identify each center. If either a single color or a pair of two different colors is chosen to represent each center and if each center is uniquely represented by that choice of one or two colors, what is the minimum number of colors needed for the coding? (Assume that the order of the colors in a pair does not matter.)
 - (A) 4
 - (B) 5
 - (C) 6
 - (D) 12
 - (E) 24
- **95.** If the average (arithmetic mean) of 5 positive temperatures is x degrees Fahrenheit, then the sum of the 3 greatest of these temperatures, in degrees Fahrenheit, could be

(A) 6 <i>x</i>	(B) 4 <i>x</i>
(C) $\frac{5x}{3}$	(D) $\frac{3x}{2}$

(E) $\frac{3x}{5}$

- (D)的 length 等于 6,因为 64=2×2×2×
 2×2×2;
 (E)的 length 等于 3,因为 105=3×5×7。
- **93.** 一个小于 1,000 的正整数的最大 length 是 多少?
- 解:本题的正确答案为(B)。根据题目中的定义 可知,要使一个数的"length"最大,就必 须使乘积等于它的质数的值最小,而最小 的质数为2,又因为2⁹=512,所以小于 1,000的正整数的最大"length"为9。
- 94. 运送盒子到 12 个分配中心的公司使用颜 色码来辨认每个中心。若用一个颜色或者 一对不同的颜色来代表一个中心,且每个 中心所用的一个或一对颜色是独特的,则 最少需要多少种颜色来标记这些分配中 心?(假设每一对颜色所标记的中心与颜 色的顺序无关)
- 解:本题的正确答案为(B)。设最少需要用 n 种颜色,则 n种颜色可表示的分配中心的 数目为 n+C_n,根据题意可得:

$$n + C_n^c \ge 12 \Rightarrow n + \frac{n(n-1)}{2} \ge 12$$
$$\Rightarrow n^2 + n - 24 \ge 0$$

考虑到 n 只能取正整数,可解得 n 的最小 值为 5。

- 95. 若 5 个正温度的算术平均值为 x 华氏度, 那么这些温度中 3 个最高的温度的和(以 华氏温度计)可以是多少?
- 解:本题的正确答案为(B)。很明显3个最高 温度的和一定小于这5个正温度的和5x, 且大于这5个正温度的算术平均值的3
 倍,即3个最大的温度的和一定处于3x 和5x之间。

- 96. Exactly how many bonds does Bob have ?
 - (1) Of Bob's bonds, exactly 21 are worth at least \$5,000 each.
 - (2) Of Bob's bonds, exactly 65 per cent are worth less than \$5,000 each.

97. The pages of a report are numbered consecutively from 1 to 10. If thesum of the page numbers up to and including page number x of the report is equal to one more than the sum of the page numbers following page number x, then x =

(A) 4

- (B) 5
- (C) 6
- (D) 7
- (E) 8
- **98.** If n = p + r, where n, p, and r are positive integers and n is odd, does p equal 2? (1) p and r are prime numbers.
 - (2) $r \neq 2$

99. In Township K, $\frac{1}{5}$ of the housing units **99.** 在K镇有 $\frac{1}{5}$ 住房配有有线电视。若 $\frac{1}{10}$ 的住 are equipped with cable television. If $\frac{1}{10}$

- 96. Bob 确切地有多少张债券?
 - (1) 在 Bob 的债券中, 恰好有 21 张每张 都至少值 5,000 美元
 - (2) 在 Bob 的债券中, 恰好有 65%的债券 每张的价值都在5,000美元以下
- 解:本题的正确答案为(C)。很明显,(1)和 (2)单独都不充分:根据(1)+(2)可得21 张价值在5,000美元以上的债券占总债券 的比例为1-65%=35%,因此可求出 Bob 的总债券数为 $21 \div 35\% = 60$ 张,所 以(1)+(2)充分。
- 97. 一报告的页码从 1 至 10 连续计数。若该 报告的前 x 页包括第 x 页的页码数之和比 x 页以后的页码数的和大1, 那么 x=
- 解:本题的正确答案为(D)。设前 x 页的和为 m,则 x页之后的几页的和等于 m-1, 根据题意可得. $2m-1=1+2+3+\dots+10=55$ $\Rightarrow m = 28$ 由此考生可推出 x=7。 考生也可用等差数列前 n项的求和公式 $\left(S_n = na_1 + \frac{n(n-1)}{2}d\right) \not\cong \exists x = 7.$

98. 若 n = p + r, 其中 n, p, r 均为正整数, 且 *n*是奇数, p=2吗? (1) p和r都是质数 (2) $r \neq 2$

- 解:本题的正确答案为(C)。(1)不充分,因为 根据 b和 r 是质数,根本无法得到 b 是否 等于2; (2)也不充分,因为由 $r \neq 2$,也 无法说明 b 是否等于 2: (1) + (2) 充分, 因为根据n=p+r且n为奇数可知p和r必为一奇一偶,而 b, r 又都为质数,则其 中一个数必为 2, 但是 $r\neq 2$, 所以 b=2。
- 房,包括3配有有线电视的住房,有录像

of the housing units, including $\frac{1}{3}$ of those that are equipped with cable television, are equipped with videocassette recorders, what fraction of the housing units have neither cable television nor videocassette recorders?

(A)
$$\frac{23}{30}$$
 (B) $\frac{11}{15}$ (C) $\frac{7}{10}$
(D) $\frac{1}{6}$ (E) $\frac{2}{15}$

- 100. Each of the integers from 0 to 9, inclusive, is written on a separate slip of blank paper and the ten slips are dropped into a hat. If the slips are then drawn one at a time without replacement, how many must be drawn to ensure that the numbers on two of the slips drawn will have a sum of 10?
 - (A) Three
 - (B) Four
 - (C) Five
 - (D) Six
 - (E) Seven
- 101. How many two-element subsets of {1, 2, 3, 4} are there that do not contain the pair of elements 2 and 4?(A) One (B) Two (C) Four
 - (D) Five (E) Six
- **102.** In how many arrangements can a teacher seat 3 girls and 3 boys in a row of 6 seats if the boys are to have the first, third, and fifth seats?
 - (A) 6 (B) 9
 - (C) 12 (D) 36
 - (E) 720

机,那么既没有有线电视,又没有录像机的比率是多少?

解:本题的正确答案为(A)。配有有线电视的 住房的¹/₃配有录像机说明,有¹/₁₅的住房既 有有线电视又有录像机,因此既没有有线 电视,又没有录像机的比率为:

$$1 - \frac{1}{5} - \frac{1}{10} + \frac{1}{15} = \frac{23}{30}$$

- 100. 从 0 到 9 的整数(包括首尾数字)中的每 一个都被分别写在不同的空白纸条上, 然后这 10 张纸条以被放入一个帽子中。 若每次从帽中抽出一张且不放回,则必 须抽多少次才能确保抽出的纸条中有两 张纸条上的数字的和为 10?
- 解:本题的正确答案为(E)。0到9的整数中,两个数相加其和为10的可能性有4种,即1+6,2+8,3+7,4+6,剩下0到5不可能与另一张纸条相加为10,要想确保抽出的纸条中有2张纸条上的数字相加为10,则必须抽7次。
- **101.** 集合{1, 2, 3, 4}中有多少个两元素子 集(subsets)不包括2和4这一对元素?
- 解:本题的正确答案为(D)。集合{1,2,3,4}
 的两元子集有 C 个,其中包括一个{2,4}
 子集,所以不包括 2 和 4 这一对元素的两
 元素子集数为 C -1=5。
- 102. 若男孩坐在一排 6 个座位的 1, 3, 5 位 置上时, 某教师能有多少种方式安排 3 个男孩, 3 个女孩坐在这 6 个座位上?
- 解:本题的正确答案为(D)。若3男孩在1,
 3,5时,则3个女孩应在2,4,6,所
 以总的安排方式为:

 $P_{3}^{3} \times P_{3}^{3} = 36$

103. If the product of the integers w, x, y, and z is 770, and if 1 < w < x < y < z, what is the value of w+z?

- (A) 10
- (B) 13
- (C) 16
- (D) 18
- (E) 21
- 104. Set S consists of n distinct positive integers, none of which is greater than 12. What is the greatest possible value of n if no two integers in S have a common factor greater than 1?
 - (A) 4
 - (B) 5
 - (C) 6
 - (D) 7
 - (E) 11
- 105. If x and y are prime numbers, which of the following CANNOT be the sum of x and y?
 (A) 5
 (B) 9
 (C) 13
 - (D) 16 (E) 23
- 106. For any integer n greater than 1, <u>n</u> denotes the product of all the integers from 1 to n, inclusive. How many prime numbers are there between <u>6+2</u> and <u>6+6</u>, inclusive?
 - (A) None
 - (B) One
 - (C) Two
 - (D) Three
 - (E) Four

103. 若整数 w, x, y和 z的积(product)等于 770, 且有 1<w<x<y<z, 那么 w+z 的值是多少?

解:本题的正确答案为(B)。由题可知,770 可分解成四个不同的因子相乘的形式: 770=2×5×7×11

再根据 1 < w < x < y < z 可推知 w = 2, x = 5, y = 7, z = 11, 所以 w + z 的值为 2 + 11 = 13。

- 104. 集合 S 由 n 个不同的正整数组成,且没有一个大于 12。若在 S 中任两个整数的 公约数(commonfactor)都不大于 1,那 么 n的最大可能取值是多少?
- 解:本题的正确答案为(C)。集合 S中任两个 整数的公约数都不大于1 说明该集合中 的数字都为互质数,小于12 的质数共有 2,3,5,7,11;同时1 虽然不是质数, 但它也满足题设条件,所以 n 的最大可 能值为 5+1=6。
- 105. 若 x 和 y 是质数,那么下列哪一个不能 是 x 与 y 的和?
- 解:本题的正确答案为(E)。此题应该采用排除法:5=2+3,9=7+2;13=11+2; 16=3+13最后发现只有23不能分解成两个质数的和。
- 106. 对于任何大于1的整数 n, <u>n</u>表示从1 至 n,且包括1和 n的所有整数的乘积。 在<u>6</u>+2和<u>6</u>+6之间且包括首尾项,共有 多少个质数(prime numbers)?

解: 本题的正确答案为(A)。由题意可得: <u>|6</u>=1×2×3×4×5×6=720

> 所以该题即为求 722 和 726 之间的质数 的个数,很明显 722,723,724,725,726 均 为合数。

The diagram above shows the various paths along which a mouse can travel from point X, where it is released, to point Y, where it is rewarded with a food pellet. How many different paths from X to Y can the mouse take if it goes directly from X to Y without retracing any point along a path? (A) 6 (B) 7 (C) 12

- (D) 14 (E) 17
- 108. Is the positive integer x an even number?(1) If x is divided by 3, the remainder is 2.(2) If x is divided by 5, the remainder is 2.

109. What is the tens digit of positive integer x?
(1) x divided by 100 has a remainder of 30.
(2) x divided by 110 has a remainder of 30.

- 107. 左面的图形表示一个老鼠从 X 点被释放 到 Y 点受赏(食物小球)的所有不同路线, 若此老鼠不重复走路上任何一点,则它 从 X 直接到 Y 可走的不同小路有多少?
- 解:本题的正确答案为(C)。由图可知,第一 个分支有两条路,第二个分支也有两条 路,第三个分支有3条路,则根据乘法 原则可知不同小路的数目为:

 $2\!\times\!2\!\times\!3\!=\!12$

- 108. 正整数 x 是偶数吗?
 (1) 若 x 被 3 除时,其余数为 2;
 (2) 若 x 被 5 除时,其余数为 2。
- 解:本题的正确答案为(E)。由(1)可得 x=3m+2,其中 m 为整数,当 m 为偶数时, x 就为偶数,当 m 为奇数时,x 就为奇 数,所以(1)不充分;由(2)可得 x=5n+2,其中 n 为整数,同理当 n 为偶数 时,x 就为偶数,当 n 为奇数时,x 就为 奇数,所以(2)也不充分;由(1)+(2)可 得 x-2 既能被 3 整除又能被 5 整除,而 3 和 5 又是互质数,所以 x-2 一定能被 15 整除,也即 x=15a+2,其中 a 为整 数,此时 x 的奇偶性仍随 a 的奇偶性的 变化而变化,所以(1)+(2)也不充分。
- 109. 正整数 x的+位数(tens digit)是多少?
 (1) x被 100 除时余数为 30;
 (2) x被 110 除时余数为 30。
- 解:本题的正确答案为(A)。根据(1)可得 x=100m+30,其中 m为整数,因此不 管 m取何值 x 的十位数都是 3,所以(1) 能够充分地回答问题;由(2)可得 x= 110n+30,其中 n为整数,因此 x 的十

位数受 n 的取值的影响而不能确定,所以(2)单独不能充分地回答问题。

110. What is the least positive integer that is divisible by each of the integers 1 through 7, inclusive?

(A) 420	(B) 840
(C) 1,260	(D) 2,520
(E) 5.040	

111.

1,234	
1,243	
1,324	
•••••	
+4,321	

The addition problem above shows four of the 24 different integers that can be formed by using each of the digits 1, 2, 3 and 4 exactly once in each integer. What is the sum of these 24 integers?

(A) 24,000	(B) 26,664
(C) 40,440	(D) 60,000
(E) 66,660	

- 112. In a certain class consisting of 36 students, some boys and some girls, exactly $\frac{1}{3}$ of the boys and exactly $\frac{1}{4}$ of the girls walk to school. What is the greatest possible number of students in this class who walk to school?
 - (A) 9
 - (B) 10
 - (C) 11
 - (D) 12
 - (E) 13

- **110.** 能够被从1至7包括1和7在内的的每个 整数整除(dividible)的最小正整数是多 少?
- 解:本题的正确答案为(A)。该题也即让考 生求1,2,3,4,5,6和7这7个数 的最小公倍数。根据最小公倍的求解 公式可得其最小公倍数=2²×3×5×7 =21×20=420。
- 111. 上面的加法题表示出了每个数字中使用 1,2,3和4各1次所组成的24个不同整数中的4个,问这24个整数的和是多少?
- 解:本题的正确答案为(E)。根据题意可知
 1,2,3和4共可构成 P⁴=24个四位整数,四个数字在每个四位整数中出仅现
 一次。在这 24个四位整数中,1,2,3
 和4在个位,十位,百位和千位上出现
 的概率相同,均6次。因此个位,十位,
 百位和千位相加的和均为(1+2+3+4)
 ×6=60,所以这 24个四位整数的和为:
 60(1000+100+10+1)=66660
- 112. 某一班级由 36 名男女学生组成,其中恰 好有 1/3 的男生和 1/4 的女生步行上学。 问该班最多可能有多少名学生步行到校?
- 解:本题的正确答案为(C)。根据恰好有1/3 的男生和1/4的女生步行上学可知该班 男生人数一定是3的倍数,女生人数一 定为4的倍数。要使步行上学的学生人 数最多,就得使男生人数在满足上述条 件的情况下尽可能地多。仔细观察发现, 男生人数最多只能为24人,女生人数最 少得为12人,因此步行上学的学生的最 大数目为:

$$24 \times \frac{1}{3} + 12 \times \frac{1}{4} = 11$$

73

- **113.** A certain packing crate contains between 50 and 60 books. How many books are there in the packing crate?
 - If the books are counted out by three, there will be one book left over.
 - (2) If the books are counted out by sixes, there will be one book left over.
- 114. If a is a positive integer, and if the units' digit of a^2 is 9 and the units' digit of $(a+1)^2$ is 4, what is the units' digit of $(a+2)^2$?
 - (A) 1
 - (B) 3
 - (C) 5
 - (D) 7
 - (E) 9
- **115.** If 75 percent of a class answered the first question on a certain test correctly, 55 percent answered the second question on the test correctly, and 20 percent answered neither of the questions correctly, what percent answered both correctly?

(A) 10%	(B) 20 ^⁰ ∕₀	(C) 30%
(D) 50%	(E) 65%	

- 116. If y is an odd integer, which of the following must be an even integer?
 - (A) y+2
 - (B) y+6
 - (C) 2y 1
 - (D) 3 y
 - (E) 3y+1

- 113. 某一包装箱中有 50 到 60 本书。问该包 装箱中有多少本书?
 (1) 若每次数三本,将有一本书剩下;
 (2) 若每次数六本,将有一本书剩下。
- 解:本题的正确答案为(B)。在 50 和 60 之间 被 3 除余 1 的数有 52,55,58 三个,所 以(1)不充分;在 50 与 60 之间被 6 除余 1 的数只有 55,所以(2)充分。
- 114. 若 a 是一个 正整数 (positive integer), 且
 a² 的个位数 (unit's digit) 是 9, (a+1)²
 的个位数是 4, 那么(a+2)² 的个位数字
 是多少?
- 解:本题的正确答案为(A)。根据 a² 的个位数是9 可推知 a 的个位数可能为3 或7, 又根据(a+1)² 的个位数是4,可推知 a 的个位数只能是7。由以上分析可知(a+ 2)² 的个位数应为1。
- 115. 若在某一考试中一班级有75%的学生答 对了第一个问题,55%的学生答对了第 二个问题,20%的学生两道题都没有答 对,问两道题都答对的学生的百分比是 多少?
- 解:本题的正确答案为(D)。因为20%的学 生连一道题也没答对,所以至少答对两 道题中的任一道题的比率为80%,所以 答对两道题的学生所占的百分比为: 55%+75%-80%=50%
- 116. 若 y是一个奇数,下列哪一个一定是一个偶数?
- 解:本题的正确答案为(E)。根据奇数+偶数=奇数可知 y+2和 y+6都一定是奇数; 2y是一个偶数,所以2y-1是一个奇数;因为3不能被2整除,y也不能被2整除,所以3y也不能被2整除,也即3y是一个奇数;因为奇数与偶数相间分布,所以3y+1一定是一个偶数。

- 117. If k is an integer greater than 44 and less than 51, then which of the following could be the product of 11 and k?
 - (A) 565
 - (B) 550
 - (C) 500
 - (D) 484
 - (E) 440

118.

In the table above, what is the least number of table entries that are needed to show the mileage between each city and each of the other five cities?

- (A) 15
- (B) 21
- (C) 25
- (D) 30
- (E) 36
- 119. If when a certain integer x is divided by 5 the remainder is 2, then each of the following could also be an integer
 - (A) $\frac{x}{17}$
 - (B) $\frac{x}{11}$
 - (C) $\frac{x}{10}$
 - (D) $\frac{x}{6}$

- 117. 若 k 是一个比 44 大,比 51 小的整数, 那么下列哪一项可能是 11 与 k 的乘积?
- 解:本题的正确答案为(B)。11 与 k 的乘积应 该在484 与561之间,所以(A),(D)和 (C)都显然不对;又因为500不能被11 整除,所以(C)也肯定不对,而550正好 是50 与11 的乘积。
- 118. 在上面的图表中,最少需要在多少个空格中填入数字才能表明每个城市与其他5个城市中的每一个之间的里程(mileage)?
- 解:本题的正确答案为(A)。该题也即让考生 求6个城市中任意两个之间的距离所构成的集合中的元素的个数。也即求6个 不同元素中随机选出两个的组合:C⁶= 15。考生也或用较麻烦但较易理解的方 法:A行中填入5个数值表示其与B,C, D,E,F的距离,在B行中填入4个数 值分别表示其与C,D,E和F之间的距 离;同理在C行中需填入3个数值,D 行中需填入2个数值,E行中只需填入 一个数值,所以其总数为:

5+4+3+2+1=15

- 119. 若当某一个整数 x 被 5 除时,其余数为
 2,则下面除了哪一项之外也都可能是整数?
- 解:本题的正确答案为(C)。此题可以用代入 法,根据题意可设 x=5m+2,其中 m 为 整数。则当 m=3 时, $\frac{x}{17}$ 是整数;当 m=4 时, $\frac{x}{11}$ 是整数;当 m=2 时, $\frac{x}{6}$ 和 $\frac{x}{3}$ 都 是整数;但是无论 m取何值,都无法得

(E)
$$\frac{x}{3}$$

- 120. What is the least number of digits (including repetitions) needed to express 10¹⁰⁰ in decimal notation?
 - (A) 4
 - (B) 100
 - (C) 101
 - (D) 1,000
 - (E) 1,001
- **121.** All of the following have the same number of distinct prime factors EXCEPT
 - (A) 20
 - (B) 21
 - (C) 24
 - (D) 30
 - (E) 45

- 122. How many integers between 100 and 150, inclusive, can be evenly divided by neither 3 nor 5?
 - (A) 33
 - (B) 28

出 $\frac{x}{10}$ 是整数,因为被 10 整除的数的个位 必须为 0,而x=5m+2的个位数不是 2 就是 7,所以 $\frac{x}{10}$ 不可能是整数。

- **120.** 用*十进制计数* (decimal notation)来表示 10¹⁰⁰,问最少需要多少个数字(包括重 复)?
- 解:本题的的正确答案为(C)。该题中的 decimal notation 指十进制计数,它是与科 学计数法以及指数计数法等相对应的一 种计数方法。10¹⁰⁰是指数形式的数,本 题实际上就是让考生求 10¹⁰⁰是多少位的 数。10¹=10 需要 2 个数字, 10²=100 需 要 3 个数字, 10³=1000 需要 4 个数字, 由此可推知 10¹⁰⁰需要 101 个数字。
- **121.** 下面除了哪一个数之外,所有的数所具有的不同质因子数都相同?
- 解:本题的正确答案为(D)。在做此题时考生 一定要注意题目要求的不同质因子的个 数,所以可用质因子数求解公式来解此 题:
 20=2² • 5,所以 20 的不同因子数为两 个(2和5)
 21=3 • 7,所以 21 的不同因子数为两个 (3和7)
 24=2³ • 3,所以 24 的不同质因子数为 两个(2和3)
 30=2 • 3 • 5,所以 30 的不同质因子数 为为三个(2,3和5)
 45=3² • 5,所以 45 的不同质因子数为 两个(3和5)
- 122. 在 100 和 150 之间,包括 100 和 150,有
 多少个数既不能被 3 整除也不能被 5 整除?
- 解:本题的正确答案为(C)。用 100 到 150 之 间的所有数减去能被 3 整除的数,再减

(C)	27
(D)	25
(E)	24

- 123. A certain alloy contains only lead, copper, and tin. How many pounds of tin are contained in 56 pounds of the alloy?
 - (1) By weight the alloy is $\frac{3}{7}$ lead and $\frac{5}{14}$ copper.
 - (2) By weight the alloy contains 6 parts lead and 5 parts copper

124.		\$	
	и	t	8
		4	

A computer generates non-zero numbers for the figure above so that the product of the numbers along any vertical column is equal to the product of the numbers in any horizontal row. What number does *s* represent?

(1) u equals 6. (2) t equals 2.

去能被5整除的数,最后再加上既能被3 整除,又能被5整除的数即为所求:100 和150之间包括100和150共有51个数, 能被3整除的数的个数为 $\frac{150-102}{3}$ +1= 17个;能被5整除的数的个数为 $\frac{150-100}{5}$ +1=11个;既能被3整除又能 被5整除的数的个数为 $\frac{150-105}{15}$ +1=4, 所以100到150之间既不能被3整除又 不能被5整除的数的个数为: 51-17-11+4=27个

- **123.** 某种合金仅含有铅、铜和锡。问 56 磅的 该种合金中含有多少磅的锡?
- 解:本题的正确答案为(A)。由(1)中的铅在 该合金中所占的比例等于5/7,铜的比例 等于5/14可推知锡所占的比例等于3/14,用 锡的总量 56 乘以所占的比例3/14可以得到 锡的量,所以(1)单独能充分回答上面的问题;因根据条件(2)无法判断共有多少 parts,所以其单独无法充分回答上面的问题。
- 124. 如左图所示一计算机生成一些非零数字, 任一垂直列上的数字的乘积都与任一水 平行上的数字的乘积相等。问 s 代表哪 个数字?
- 解:本题的正确答案为(A)。根据题意可得: 4st=8tu,也即 s=2u, s的值与 t 无关, 而由 u 的大小决定,所以(1)充分,而 (2)不充分。

- **125.** What is the value of the two-digit number *x*?
 - (1) The sum of the two digits is 4.
 - (2) The difference between the two digits is 2.

- 126. If 77,777=70,707+(7.07×n), then n
 (A) 1,000
 (B) 100
 - (C) 10
 - (D) $\frac{1}{100}$ (E) $\frac{1}{1,000}$

127. If $r=2^3 \cdot 5^2 \cdot 7$ and $s=2^2 \cdot 3^2 \cdot 5$, which of the following is equal to the greatest common divisor of *r* and *s*?

- (A) $2 \cdot 5$ (B) $2^2 \cdot 5$ (C) $2^3 \cdot 5^2$ (D) $2 \cdot 3 \cdot 5 \cdot 7$ (E) $2^3 \cdot 3^2 \cdot 5^2 \cdot 7$
- 128. If x and y are different prime numbers, each greater than 2, which of the following must be true?
 - I $x+y\neq 91$
 - II x-y is an even integer.
 - $\prod_{\nu} \frac{x}{\nu}$ is not an integer.
 - (A) **∏** only
 - (B) I and $I\!\!I$ only
 - (C) I and $I\!\!I$ only
 - (D) **∏** and **∏** only
 - (E) I , $I\!\!I$, and $I\!I\!\!I$

- 125. 两位数 x的值是多少?
 (1) 这两个数字的和等于 4
 (2) 这两个数字的差等于 2
- 解:本题的正确答案为(E)。很明显单独由
 (1)或(2)均无法求出 x的值;由(1)+
 (2)可以得到两个方程,设 x的十位数和
 个位数分别为 m 和 n,则由题意可得:

m + n = 4 m - n = 2

由该方程组可求出 m=3, n=1, 但因这两 个数即能组成 13 又能组成 31, 所以(1)和 (2)相结合也无法充分地回答上面的问题。

- **126.** 若 77,777=70,707+(7.07×n), 那么 n 等于多少?
- **解**:本题的正确答案为(A)。由77,777 = 70,707+(7.07×n) 可得7.07×n=77,777-70,707=7,070 ⇒ $n = \frac{7,070}{7.07} = 1,000$ 。
- 127. 若 r=2³ · 5² · 7, s=2² · 3² · 5,则下列
 哪一项等于 r 与 s 的最大公约数?
- 解:本题的正确答案为(B)。用分解因式的方法,提取r和s的最大公因子即可:
 r+s=2² 5(2 5 7+3²),所以r和s
 的最大公约数为2² 5。
- **128.** 若 *x* 和 *y* 是大于 2 的不同的质数 (prime number),则下面哪一个一定正确?
- 解:本题的正确答案为(E)。对于这样的题, 考生需要根据整数的性质逐条进行判断:
 - x+y≠91必然成立,因为91必须由 一个偶数与一个奇数相加才能得到, 而 x, y都不可能为偶数;
 - Ⅱ. x-y的值是偶数必然成立,因为 x
 与 y 都一定是奇数,而奇数与奇数
 的差是偶数;
 - III. $\frac{x}{y}$ 不是整数也必然成立,因为x和y是不相等的互质数。

129. Is a+b+c+d equal to 4?

- (1) a, b, c, and d are each positive.
- (2) The product abcd equals 1.

- 130. How many positive prime numbers are less than the integer n?
 - (1) 14 < n < 20
 - (2) 13<*n*<17

- 131. Raffle tickets numbered consecutively from 101 through 350 are placed in a box. What is the probability that a ticket selected at random will have a number with a hundreds digit of 2?
 - (A) $\frac{2}{5}$ (B) $\frac{2}{7}$ (C) $\frac{33}{83}$ (D) $\frac{99}{250}$ (E) $\frac{100}{249}$
- **132.** How many factors of 60 are greater than $\sqrt{60}$?
 - (A) Twelve
 - (B) Nine

- 129. a+b+c+d 等于4吗?
 (1) a, b, c和d 都是正数;
 (2) abcd 的乘积等于1。
- 解:本题的正确答案为(E)。(1)显然不充分; 因为题目中并未说明 a, b, c和 d 都是整 数,同理(2)也不充分。考生可通过举例 加以验证,如当 a, b, c和 d 都等于 1 时,这四个数的乘积等于 1,其和等于 4;而当 a=2, $b=\frac{1}{2}$, c=3, $d=\frac{1}{3}$ 时, 这四个数的积等于 1,而其和则显然不等 于 4;(1)+(2)也同样不充分。
- 130. 比整数 n小的正质数有多少个?
- 解:本题的正确答案为(B)。因为在14与20 之间有质数17,所以当n取15,16,17
 时,比n小的质数有2,3,5,7,11,
 13,共6个;而当n取18,19时,比n
 小的质数有2,3,5,7,11,13,17,
 共有7个,所以(1)不充分;因为13与
 17之间没有质数,所以当n的取值在13
 与17之间时,小于它的质数的个数是一定的,因此(2)充分。
- 131. 编号连续(从 101 至 350)的彩票放置在一 盒子中。若从盒子中随机抽取一张彩票, 则该彩票的百位数字是 2 的概率等于多 少?
- 解:本题的正确答案为(A)。从101至350, 百位数字是2的数是200至299之间的 数,包括200和299,一共有100个;从 101至350中共有250个数字,因此彩票 百位数字是2的概率为:

$$P = \frac{100}{250} = \frac{2}{5}$$

- 132. 60 有多少个因子比 √60大?
- 解:本题的正确答案为(E)。60=2² 3 5,
 所以60共有(2+1)(1+1)(1+1)=12个
 因子。根据本书中所讲的因子数的性质

(C) Eight

(D) Seven

(E) Six

133. If all of the telephone extensions in a certain company must be even numbers, and if each of the extensions uses all four of the digits 1, 2, 3, and 6, what is the greatest number of four-digit extensions that the company can have?

(A) 4

- (B) 6
- (C) 12
- (D) 16
- (E) 24
- **134.** Which of the following CANNOT be zero?
 - I. The sum of 7 consecutive integers
 - II. The sum of 10 consecutive even integers
 - III. The product of 13 consecutive integers
 - (A) **∏** only
 - (B) I and I only
 - (C) I and III only
 - (D) **∏** and **Ⅲ** only
 - (E) I , $I\!\!I$, and $I\!I\!\!I$

(当某一个正整数 n有偶数个因子时, n必不是完全平方数, 且大于 \sqrt{n} 的因子数与小于 \sqrt{n} 的因子数相同)可知 60 有 6 个比 $\sqrt{60}$ 大的因子。

- 133. 若某公司所有的 电话分机 (telephone extensions)号码都是偶数,且每个分机 号都使用 1, 2, 3 和 6 这 4 个数字,问 该公司最多可能有多少个 4 位数字的分 机?
- 解:本题的正确答案为(C)。因为分机的号码 都是偶数,所以每个分机号码的个位只能 是2与6这两个数字中的1个,即C²;而 剩下的三个位置则是其余三个数字的全排 列 P³₃,因此分机的最大可能数为:C²₂× P³₃=12。
- 134. 下列哪一项不可能为 0?I.7个连续整数的和;
 - Ⅱ.10个连续偶数的和;
 - Ⅲ.13个连续整数的乘积。
- 解:本题的正确答案为(A)。当7个连续整数的中数为0时,其和一定为0;因为10个连续偶数中正负数的个数不可能完全相等,所以相加时不可能刚好正负相消,最后结果也就不可能为0;13个连续整数中只要有一个整数是0,其积就等于0。所以这三项中只有Ⅱ正确。

第二章

Algebra (代数)

代数是对数学语言的概括。对于不能仅仅使用数学方法解决的问题,或者需要经过很长的复杂计算才能使用数学方法解决的问题,代数提供了一种相对简便的解决方法。通过将很长的文字 表述简化成简单的公式、表达式或等式,代数提供了一种快速表达的方法。简化了文字表述之 后,代数结果的表达非常简单,如下所示:

Algebraic Expression
x + 14
2x - 3
$(x+6)^2$
$x^2 + 6^2$
50 <i>x</i>
$\frac{80+85+90+x}{4}$

GMAT 考试中出现的代数题一般都不超过高中一年级数学书中的内容。

- 1. Rules of Exponents(幂的运算)
- 2. Real Number(实数)
- 3. Variables and Algebraic Expressions(变量和代数表达式)
- 4. Manipulating Algebraic Expressions(代数式的运算)
- 5. Equations(方程)
- 6. Solving Linear Equations with One Unknown(求解一元线性方程)
- 7. Solving Two Linear Equations with Two Unknowns(求解两元线性方程)
- 8. Solving Equations by Factoring(用因式分解法解方程)
- 9. Solving Quadratic Equations(求解二次方程)
- 10. Inequalities(不等式)
- 11. Absolute Value(绝对值)
- 12. Functions(函数)

第一节 Rules of Exponents (幂的运算)

一、基本概念

1. Powers of Numbers(乘方): 这种求 n个相同因数的积的运算, 叫做乘方, 乘方的结果叫做

幂。在 aⁿ 中, a 叫做底数, n 叫做指数, aⁿ 读作 a 的 n 次方。 aⁿ 看作是 a 的 n 次方的结果时,也可读作 a 的 n 次幂。二次方也叫平方,三次方也叫立方。

正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。

2. Roots of Numbers(开方):一般地,如果一个数的平方等于 a,这个数就叫做 a的平方根 (也叫做二次方根),换句话说,如果 $x^2 = a$,则 x就叫做 a的平方根。

一般来说,一个正数有两个平方根,这两个平方根互为相反数,零的平方根为零。在式子 $\pm^2\sqrt{a}$ 中, a叫做被开方数,2叫做根指数。

正数 a 的正的平方根,也叫做 a 的算术平方根;零的平方根也叫做零的算术平方根,因此零的算术平方根仍旧为零。

二、Properties of Exponents(幂的基本性质)

(1)
$$a^{m} \cdot a^{n} = a^{m+n}$$

(2) $a^{m} \div a^{n} = a^{m-n}$
(3) $(a^{m})^{n} = a^{mm}$
(4) $a^{-m} = \frac{1}{a^{m}} (m > 0, a \neq 0)$
(5) $a^{\frac{m}{n}} = \sqrt[n]{a^{m}} (\frac{m}{n}$ 为最简分数,当 n为正偶数时, a^{m} 必为非负数)
(6) $(a \cdot b)^{m} = a^{m} \cdot b^{m}$
(7) $\frac{a^{x}}{b^{x}} = \left(\frac{a}{b}\right)^{x}$

(8)
$$a^0 = 1, (a \neq 0)$$

(9) Powers and Corresponding Value (指数及其相应的幂)

For the GMAT, memorize the exponential values in the following table, you'll be glad your did, since these are the ones that you're most likely to see on the exam.

Dese			Power and	l Correspond	ding Value		
Base	2	3	4	5	6	7	8
2	4	816	32	64	128	256	
3	9	27	81	243			
4	16	64	256				
5	25	125	625				
6	36	216					
7	49	343					

三、Exponents, Roots and Real Number Line (幂, 方根与实数轴)

1. Exponents and the Real Number Line (幂和实数轴)

Raising numbers to powers can have surprising effects on the size and/or sign (negative vs. positive) of the base number. This is one of the test-makers' favorite areas! The impact of raising a number to an exponent (power) depends on the region on the number line where the number and

exponent fall. Here are the four regions you need to consider:

- (1) Less than -1 (to the left of -1 on the number line)
- (2) Between -1 and 0
- (3) Between 0 and 1
- (4) Greater than 1 (to the right of 1 on the number line)

例 1: If $-1 \le x \le 0$, which of the follow-	解:本题的正确答案为(E)。五个选项从小到
ing expressions is smallest in value?	大的顺序依次是:(E),(B),(A),(D),(C)。
(A) x^2	其分析如下所示:
(B) x^{3}	(C) equals 1 (any non-zero term raised to
(C) x^0	the power of zero equals 1)
(D) $-x$	(D) is a positive number between 0 and 1
(E) $\frac{1}{r^{3}}$	(A) is a positive number between 0 and
x^3	x , which is the value of (D)
	(B) is a negative non-integer between 0 and x
	(E) is a negative number less than (to the
	left of)-1

2. Roots and the Real Number Line (平方根及实数轴)

As with exponents, the root of a number can bear a surprising relationship to the size and/or sign (negative vs. positive) of the number (another favorite area of the test-makers). Here are our observations you should remember.

(1) If n > 1, then $1 < \sqrt[3]{n} < \sqrt{n} < n$ (the higher the roots, the lower the value). However, if n lies between 0 and 1, then $n < \sqrt{n} < \sqrt[3]{n} < 1$ (the higher the root, the higher the value).

(2) The square root of any negative number is an imaginary number(虚数), not a real number. Remember: you won't encounter imaginary numbers on the GMAT.

(3) Every positive number has two square roots: a negative number and a positive number (with the same absolute value). The same holds true for all other even-numbered roots of positive numbers.

(4) Every negative number has exactly one cube root, and that root is a negative number. The same holds true for all other odd-numbered roots of negative numbers.

(5) Every positive number has only one cube root, and that root is always a positive number. The same holds true for all other odd-numbered roots of positive numbers.

四、The Operation Rule of Radicals(根式的运算法则)

1. Combining Radicals (根式的合并)

(1) Addition and Subtraction(加法与减法): If a term under a radical is being added to or subtracted from a term under a different radical, you cannot combine the two terms under the same radical. (注: 根式相加减时,不能把不同根式下的数直接相加减。)

如: $\sqrt{x} + \sqrt{y} \neq \sqrt{x+y}$

$$\sqrt{x} - \sqrt{y} \neq \sqrt{x - y}$$
$$\sqrt{x} + \sqrt{x} = 2 \sqrt{x} (x \neq \sqrt{2x})$$

(2) Multiplication and Division: Terms under different radicals can be combined under a common radical if one term is multiplied or divided by the other, but only if the root is the same. (注: 仅当两根式的幂指数相同时,才能把它们的根式的下面的数相乘除。)

2. Simplifying Radicals (化简根式)

On the GMAT, always look for the possibility of simplifying radicals by moving part of what's inside the radical to the outside. Check inside your square-root radicals for factors that are squares of nice tidy numbers (especially integers).

注: 在 GMAT 考试中,如根式下面有可提取到根式外面去的因子,一定要把该因子提到根式的 外面去,若分母上有根式时,一般要先把分母上的根式约去,这样可以使运算的步骤大为简化。

下面表中的的平方根和立方根都是 GMAT 考试中经常用到的,若考生能熟记下表中的内容,将会使考试时做题的速度大为提高。

Common square roots	Common cube roots
*	3√8
$\sqrt{121} = 11$	
$\sqrt{124} = 12$	$\sqrt[3]{27} = 3$
$\sqrt{169} = 13$	$\sqrt[3]{64} = 4$
$\sqrt{196} = 14$	$\sqrt[3]{125} = 5$
$\sqrt{225} = 15$	$\sqrt[3]{216} = 6$
$\sqrt{625} = 25$	$\sqrt[3]{343} = 7$
	$\sqrt[3]{512} = 8$
	$\sqrt[3]{729} = 9$
	$\sqrt[3]{1000} = 10$

第二节 **Progressions and Sequence** (级数与数列)

一、Progressions (级数)

设 a_1 , a_2 , a_3 , ..., a_n , ...是一个数列, 则称 $a_1 + a_2 + a_3 + \dots + a_n + \dots$ 为 "级数" 或 "无穷级数"。 You might encounter a GMAT question involving a series of numbers (or other terms) in which the terms progress according to some pattern. Your task is to recognize the pattern and to identify unknown terms based on it. Arithmetic Progression 或 Series(等差级数)
 亦称算术级数。级数 a+(a+d)+(a+2d)+···+ [a+(n-1)d] +···称为等差级数。
 Geometric Progression 或 Series(等比级数)
 亦称 "几何级数"。级数 a+ar+ar²+ar³+···+arⁿ+···称为"等比级数"。

例 2: In the series { N_1 , N_2 , N_3 … }, where $N_x = x^2 - 2x$, what is the value of (N_{50} $- N_{49}$) - ($N_{48} - N_{47}$)?

(A) —16

(B) 4 (C) 9

(D)22

(E) 49

解:本题的正确答案是(B),解答如下: 由 $N_x = x^2 - 2x$ 可得, $N_{50} = 50^2 - 2 \times 50$, $N_{49} = 49^2 - 2 \times 49$ $N_{48} = 48^2 - 2 \times 48$, $N_{47} = 47^2 - 2 \times 47$ $\Rightarrow (N_{50} - N_{49}) - (N_{48} - N_{47})$ $= (50^2 - 49^2 - 2 \times 50 + 2 \times 49) - (48^2 - 47^2 - 2 \times 48 + 2 \times 47)$ = [(50 + 49)(50 - 49) - 2(50 - 49)] - [(48 + 47)(48 - 47) - 2(48 - 47)] = (99 - 2) - (95 - 2) = 4 **注**: 在解答本题时一定不要急于去计算,要 细心观察级数的特点,并综合利用多种解题技巧, 如解 答本题时利用两数平方差的计算公式

" $a^2 - b^2 = (a+b)(a-b)$ "就使解题过程大为简化。

二、Comparisons of Progression (级数的比较)

The test-makers might also ask you to compare two sets of numbers. Always look for a pattern among the numbers which provides a shortcut to determining their sum.

例 3: What is the difference between the sum 解:本题的正确答案是(D),解答本题的 of all positive even integers less than 102 and the 技巧是先比较两个序列数的前几项: even integers: {2, 4, 6, 8, ...100} sum of all positive odd integers less than 102? odd integers: {1, 3, 5, 7, ...99, 101} (A) 0 通过对两个数列的对比,我们不难发现除 (B) 1 1之外,偶数数列的每一项都比奇数数列小1, (C) 50 两数列中这样的对应数一共有 50 个, 再加上 (D) 51 奇数数列多出的一项1,可知小于102的正偶 (E) 101 数比小于102的正奇数小51。

三、Sequence(数列)

1. Arithmetic Sequence (等差数列)

如果数列从第二项开始,每一项与前一项的差为常数 d,则称该数列为"等差数列",d称为 "公差"(common difference)。等差数列可写成 a, a+d, a+2d, …a+(n-1)d, …的形式。等 差数列具有以下性质: 如果 a_1 , a_2 , a_3 , …, a_n , …是一个以 a_1 为第一项, d 为公差和 a_n 为第 n 项的等差数列, 则下式成立:

- $I \quad a_n = a_1 + (n-1) d$
- II S_n(前 n项之和)= $\frac{n(a_1+a_n)}{2}$ = $na_1 + \frac{n(n-1)}{2} d$
- Ⅲ M(中项或中数)

• 当 *n* 为偶数时, *M* 为中间两项的算术平均 $M = \frac{a_{\frac{n}{2}} + a_{\frac{n}{2}+1}}{2}$

- 当 *n* 为奇数时, *M* 为中间项 *M*=*a*^{*n*+1}
- 2. Geometric Sequence (等比数列)

如果数列从第二项开始,每一项与前一项的比为常数 q,则称该数列为"等比数列",q称为"公比"(common ratio)。等比数列可以写成 a, aq, aq²,…, aqⁿ,…和形式。等比数列具有如下性质:

如果 a_1 , a_2 , a_3 , …, a_n , …是一个以 a_1 为第一项, q 为公比和 a_n 为第 n 项的等比数列, 则下式成立:

 $I \qquad a_n = a_1 q^{n-1}$

II
$$S_n(前 n \bar{\eta} n \bar{\eta} n \bar{\eta}) = \frac{a_1 (1-q^n)}{1-q} (q \neq 1), \quad \text{d} \quad S_n = \frac{a_1 - a_n q}{1-q} (q \neq 1)$$

- Ⅲ M(中项或中数)
- 当 *n*为偶数时, *M*为中间两项的几何平均数: $M = \sqrt{a_{\frac{n}{2}} \times a_{\frac{n}{2}+1}}$
- 当 *n* 为奇数时, *M* 为中间项: *M*= *a*^{*n*+1}

例 4: 有 10 个人参加一个联欢会,每个人都与其他各人仅握了一次手,问这次联欢会共 有多少次握手? **解法**—: 将这 10 个人编为 1 至 10 号,则 1 号与 2 到 10 号这 9 人握 9 次手,2 号在前述计算 中已计算了他与 1 号的握手,因而算 2 号时为计 算 2 号与 3 到 10 号这 8 人握了 8 次手……由此可 见这次联欢会总共握手的次数是 1 到 9 这一等差

数列的和,其结果为 $\frac{(1+9)\times 9}{2}=45;$

解法二:由题意可知,本题其实就是求10
个人中取2个人有多少种取法,也即C₁₀=45;
解法三:共10个人,每人应握9次手,若
9×10=90次,由于握手是由两个人参与的,也
即重复了一倍,因而其结果为<u>90</u>=45。

第三节 Real Number (实 数)

一、基本概念

1. Number Line(数轴)

规定了原点、方向和单位长度的直线。数轴上的点和实数一一对应。从原点出发朝正方向的

86

射线上的点对应正数,相反方向的射线上的点对应负数,原点对应数为零。

2. Absolute Value (绝对值)

某数在数轴上与零点之间的距离称为该数的绝对值,例如: |-3|=3。

3. Rational Numbers (有理数)

正整数、负整数、正分数、负分数以及零统称为有理数。有理数可以写成^{*m*} 的形式,其中 *m* 和 *n* 都是整数,且 *n* 不等于零。

4. Irrational Numbers(无理数)

不循环的无限小数。例如用正方形的一边去度量它的对角线时,所得的比值 2就是一个无理数,写成小数 1.414…时是无限不循环的。又如,圆周率 π=3.141592653…,也是一个无理数。

5. Positive and Negative Numbers(正数和负数)

All real numbers except zero are either positive or negative.

注:零既不是正数也不是负数。

6. Real Number(实数)

有理数和无理数统称为实数。与实数相对的为虚数(imaginary numbers)。虚数的内容在 GMAT考试中不作要求。

All real numbers correspond to points on the number line(数轴) and all points on the number line correspond to real number.

二、Classification of Real Numbers(实数的分类)

三、Properties of Real Numbers(实数的性质)

1. 有理数集对四则运算是封闭的(零不能作除数),而两个无理数的和、差、积和商却不一

定是无理数。

- 2. 有理数和无理数之间的运算有以下的规律:
 - 有理数±无理数=无理数
 - 非零有理数×无理数=无理数
 - 非零有理数 = 无理数 无理数

<u>无理数</u> 非零有理数=无理数

3. 有理数与无理数集无公共元素,即有理数 = 无理数。

4. 有理数与无理数集都具有稠密性(即实数集和数轴上所有点组成的集合是一一对应的)和 有序性(即可以比较大小)。

- 5. 如果 x, y和 z都是实数,则关于 x, y和 z有下列性质成立:
- (1) x + y = y + x, $\pi xy = yx$
- (2) (x+y)+z=x+(y+z), $\pi(xy)z=x(yz)$
- (3) x(y+z) = xy+yz
- (4) 如果 x 和 y 都是正数, 那么 x+y 和 xy 都是正数
- (5) 如果 *x* 和 *y* 都是负数, 那么 *x*+*y*是负数, *xy*是正数
- (6) 如果 *x* 是正数, *y* 是负数, 那么 *xy* 是负数
- (7) 如果 xy=0, 那么 x=0 或 y=0
- (8) $|x+y| \leq |x|+|y|$

(9) 在实数中互为相反数的两个数的和为零:反之,若两数的和为零,那么这两个数必互为相 反数。

> 第四节 Variable and Algebraic Expression (变量和代数表达式)

Algebra is based on the operations of arithmetic and on the concept of an unknown quantity, or variable. Letters such as x or y are used to represent unknown quantities. For example, suppose Tom has 6 more books than Jack has. If G represents the number of books that Jack has, then the number of books that Tom has is G+6. As another example, if Robby's present salary S is increased by 10%, his new salary is 1.1S. A combination of letters and arithmetic operations, such as

G+5,
$$7x^2 - 5x + 3$$
 and $\frac{4x}{3x^2 - 6}$

is called an algebraic expression.

The expression $7x^2 - 5x + 3$ consists of the terms $7x^2$, -5x, and 3, where 7 is the coefficient of x^2 , -5 is the coefficient of x^1 , and 3 is a constant term (or coefficient of $x^0 = 1$). Such an expression is called a second degree (or quadratic) polynomial in x since the highest power of xis 2. The expression G+6 is a first degree (or linear) polynomial in G since the highest power of 88

G is 1. The expression $\frac{4x}{3x^2-6}$ is not a polynomial because it is not a sum of terms that are each powers of *x* multiplied by coefficients.

第五节 Factorable Expression(因式分解)

因式分解在解方程,不等式以及在代数式的运算中具有举足轻重的地位,灵活运用因式分解 的技巧是准确快速解答许多数学题的关键。常见的因式分解方法主要有以下四种。

一、提取公因式法

如果一个多项式的各项含有公因式,可以把公因式作为多项式的一个因式提出来,用这个因 式去除这个多项式,把所得的商作为另一个因式,这种因式分解的方法叫做提取公因式法。此法 是分解因式最常用的方法,也是在因式分解时,首先考虑的方法。

提取公因式的基本思维方式是"求同",为了"求同",常要对给定的多项式进行适当的恒等 变形,创造提取公因式的条件。

二、运用公式法

在因式分解中,有时需要运用乘法公式(甚至反复应用公式),因式分解常用的公式有:

1. $a^{2} - b^{2} = (a+b)(a-b)$ 2. $a^{3} - b^{3} = (a-b)(a^{2}+ab+b^{2})$ 3. $a^{3} + b^{3} = (a+b)(a^{2}-ab+b^{2})$ 4. $a^{2} + 2ab+b^{2} = (a+b)^{2}$ 5. $a^{2} - 2ab+b^{2} = (a-b)^{2}$ 6. $a^{3} + 3a^{2}b + 3ab^{2} = (a+b)^{3}$ 7. $a^{3} - 3a^{2}b + 3ab^{2} - b^{3} = (a-b)^{3}$ 8. $a^{2} + b^{2} + c^{2} + 2ab + 2bc + 2ca = (a+b+c)^{2}$

三、分组分解法

把多项式的项通过适当分组来分解因式的方法,叫做分组分解法。

运用分组分解法分解因式时,对多项式恰当分组的要求是:分组后各组能分解因式,并且在 各组分解因式的基础上,能完成对整个多项式的因式分解,分组是为进行因式分解创造条件,是 搭桥,所以在考虑如何适当分组时,通常要进行尝试和估算,分组的基本方向是"求同",也即 把各项联系起来。

四、十字相乘法

由多项式乘法得到:

 $(a_1 x + c_1)(a_2 x + c_2) = a_1 a_2 x^2 + (a_1 c_2 + a_2 c_1) x + c_1 c_2$

反过来可以得到:

 $a_1 a_2 x^2 + (a_1 c_2 + a_2 c_1) + c_1 c_2 = (a_1 x + c_1) (a_2 x + c_2)$

利用这个公式,我们可以用下面的写法,尝试把某个二次三项式如 $ax^2 + bx + c$ 分解因式,先把 a分解成 $a = a_1 a_2$,把 c分解成 $c = c_1 c_2$,并 把 a_1, a_2, c_1, c_2 排列如右:

这里斜线交叉相乘之积的和是 $a_1 c_2 + a_2 c_1$, 如果它等于二次三项式 中一次项系数 b, 那么 $a_1 x^2 + bx + c$ 就可以分解为 $(a_1 x + c_1)(a_2 x + c_2)$ 。

这种经过画十字交叉线的帮助把二次三项式分解因式的方法叫做十字相乘法。

对于二次项系数为1的二次三项式 $x^2 + px + q$,通过观察可以发现,如果能找到 *a*, *b*,使得 $1 \times b + 1 \times a = a + b = p$, $a \times b = q$,那么就有 $x^2 + px + q = (x + a)(x + b)$ 。

以上四种方法是因式分解的常用方法,一般而言,把一个多项式分解因式,可按下列步骤进行:

- 1. 多项式各项有公因式时,应先提取公因式;
- 2. 各项没有公因式时,看能否用公式法分解;
- 3. 对于二次三项式可考虑用完全平方公式或十字相乘法求解;

4. 如果运用上述方法不能分解时,再看能否用分组分解法分解。

例 5: 分解因式 $27x^2(3x-y)^2-9x(y-3x)$

例 6: 分解因式 $x^2 - 21xy + 98y^2 + x - 7y$ 。

解: 原式= $27 x^2 (3x-y)^2 - 9 x (y-3x)$ =9 x (3x-y) [3x(3x-y)+1]= $9 x (3x-y) (9x^2 - 3xy+1)$

分析:如果把 98 y² 看作常数项,那么原 式的前三项是关于 *x* 的二次三项式,用十字相 乘法分解得到的一个因式,恰好是 *x*-7 y,用 提取公因式法可再行分解。

解: 原式 =
$$(x-7y)(x-14y)+x-7y$$

= $(x-7y)(x-14y+1)_{\circ}$

第 六 节 Equations (方 程)

一、Linear Equations with One Variable(一元线性方程)

Algebraic expressions are usually used to form equations, which set two expressions equal to each other. Most equations you'll see on the GMAT are linear equations, in which the variables don't come with exponents. To solve any linear equation containing one variable, you goal is always the same: isolate the unknown (variable) on one side of the equation. To accomplish this, you may need to perform one or more of the following operations on both sides, depending on the equation:

1. 在方程的两边同加上或同减去某个数或某个代数表达式;

- 2. 在方程的两边同乘上或同除以某个不为零的数或代数表达式;
- 3. 通过交叉相乘法约去两边的分母;
- 90

4. 把方程的两边同时平方或 n次方去掉方程中的根号。

Performing any of these operations on both sides does not change the equality; it merely restates the equation in a different form.

1. Add or subtract the same term from both sides of the equation.

在求解 x 的过程中,需要在方程的两边同时加上或减去同一个数或表达式。

2. Multiply or divide both sides of the equation by the same non-zero term. 在求解 *x*时,需要在方程的两边同乘以或同除以一个不为零的数。

例 8: 假设 $\frac{11}{x} - \frac{3}{x} = 12$,求 x的值。 解: 首先合并含有 x的项, $\frac{11-3}{x} = 12$ 接下来在方程的两边同乘以 x,以消去方

程左边分母中的 x: 12 x=8

x = -2

最后在方程的两边同除以 12, 可得 $x=\frac{2}{3}$ 。

3. If each side of the equation is a fraction, your best bet is to cross-multiply.

当原方程的两边是两个分式时,用交叉相乘法消去分式,即用方程左边的分子乘以方程右边 的分母,用方程右边的分子乘以方程左边的分母,并用这两个乘积组成新的方程。因为新方程和 原方程很明显是等价方程,所以求解原方程的解的问题就转化为求新方程的解的问题。

例 9:假设 $\frac{9}{6x+2} = \frac{8}{3-x}$,求 x的值。	解:首先按上述方法将方程两边交叉相乘
	得到 $9(3-x)=8(6x+2)$
	然后把方程展开,合并同类项可得 57x=11
	最后把方程的两边同除以 57 可得 $x=\frac{11}{57}$ 。

4. Square both sides of the equation to eliminate radical signs.

当方程中的未知数在根号的下面时,首先要通过把方程的两边平方的方法消去根号,然后求 解方程的解(在求解开立方的或更高次方的根号下的未知数时也用与此类似的方法)。

例 10: 假设 2 $\sqrt{3x-5}=3$,求 x 的值。 解: 把方程的两边平方可得 4(3x-5)=9 把括号展开,并合并同类项可得 12x=29 两边同除以 12 可得 $x=\frac{29}{12}$ 。 二、Linear Equations with Two Variables(二元线性方程)

对于如同 *x*+2=*y*+3 形式的方程,我们称之为二元线性方程。在解这类方程时,我们无法 得到这个方程的数值解,因为未知数 *x*的数值由未知数 *y*所决定,而未知数 *y*的值反过来又被 *x* 所决定。但是我们可以用 *y*来表达 *x*,或用 *x*来表达 *y*,即

$$x = y + 1$$
, $y = x - 1$

要确定二元线性方程的数值解,需要两个独立的具有相同未知数的线性方程,这两个方程联立构成二元线性方程组。在求解这类方程组通常有两种方法,即:

1. The substitution method(代入法)

2. the addition-subtraction method(加减消元法) 下面将分别讲解这两类方法。

1. The Substitution Method(代入法)

用代入法求解二元线性方程组的解时,可按下列步骤进行:

I In either equation isolate one variable (*x*) on one side(在任一个方程中,分离出一个变量,例如 *x*)。

II Substitute the expression that equals x in place of x in the other equation(用等于 x 的那 个表达式代替另一个方程中的 x).

Ⅲ Solve that equation for y(解关于 y的方程).

Now that you know the value of y, plug it into either equation to find the value of x (得 到 y的值后,把 y代入任一个方程求出 x 的值).

2. The Addition-Subtraction Method(加减消元法)

用加减消元法解二元线性方程组时,可按下列步骤进行:

I. Make the coefficient of either variable the same in both equations (you can disregard the sign)(使两个方程中任一个变量的系数相同,可以先不考虑系数的符号)。

92

Ⅱ. Make sure the equations list the same variables in the same order(确保两个方程具有相同的变量且排列顺序相同)。

Ⅲ. Place one equation above the other(把一个方程放在另一个方程的上面)。

Ⅳ. Add the two equations (work down to a sum for each term), or subtract one equation from the other, to eliminate one variable(把两个方程相加,或用一个方程减去另一个方程,合并 同类项,消去一个变量重复步骤 $\Pi \sim V$,求出另一个变量)。

V. Repeat steps $\mathrm{I\!I}\sim\mathrm{V}$ to solve for the other variable

例 12:假设 5x+3y=-7,且 2x-5y=4, 求 x 的值。 解:本题是只要求 x 的值,因此用加减消 元法除去 y 即可: 5x+3y=-7 ① 2x-5y=4 ② 把①式两边同乘以 5,把②式两边同乘以 3 可得: 25x+15y=-35 ③ 6x-15y=12 ④ 把③式和④式相加可得 31x=-23,即 $x=\frac{-23}{31}$

综上所述,二元线性方程组一般具有如下的形式:

$$\begin{cases} a_1 x + b_1 y = c_1 & \text{(1)} \\ a_2 x + b_2 y = c_2 & \text{(2)} \end{cases}$$

在解这类方程时一般用代入法或加减消元法,但是在用这两种方法解题时应注意以下几点:

I. $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$,则此时方程为等价方程,方程组有无数个解; II. $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$,则此时主程为矛盾方程,方程组没有解; II. $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$,则方程组有唯一解。

三、Quadratic Equation with One Variables(一元二次方程)

An equation is quadratic if you can express it in this general form:

$$ax^2 + bx + c = 0$$

In this general form, x is the variable, a, b and c are constants (numbers), $a \neq 0$, b and c can equal 0. Every quadratic equation has exactly two solutions. (These two solutions are called roots.) All quadratic equations on the GMAT can be solved by factoring.

1. Factorable Quadratic Equations(可分解因式的一元二次方程)

To solve any factorable quadratic equation, follow these three steps:

(1) Put the equation into the standard form: $ax^2 + bx + c = 0$

(2) Factor the terms on the left side of the equation into two linear expression (with no exponents).

(3) Set each linear expression (root) equal to zero and solve for the variable in each one

因式分解时用的最多的,且最有用的是十字相乘法,其具体操作步骤如下所示:

把 m1, m2, m3和 m4 排成如右图所示的方式:

若 m_1 , m_2 , m_3 和 m_4 满足 $m_1 \times m_2 = a$, $m_3 \times m_4 = c$ 和 $m_1 \times m_4 + m_2$ × $m_3 = b$, 则一元二次方程恒等于($m_1 x + m_3$)($m_2 x + m_4$)=0。因此, 方程的根

$$x_1 = -\frac{m_3}{m_1}$$
, $x_2 = -\frac{m_4}{m_2}$.

通常情况下,将方程变为 $x^2 + \frac{b}{a}x + \frac{c}{a} = 0$,这时 $m_1 = m_2 = 1$, $m_3 \times m_4 = \frac{c}{a}$, $m_3 + m_4 = \frac{b}{a}$, 方程恒等于 $(x + m_3)(x + m_4) = 0$ 。因此,方程的根 $x_1 = -m_3$, $x_2 = -m_4$ 。

例 13: $2x^2 - 7x - 15 = 0$

解:注意到 x² 的系数是 2, 而 2 是个质数,因此只能分解成 1×2,所以本方程可写成如下的形式:

(2x)(x) = 0

接下来比较关键的一步就是找括号中缺少的常数,也即把一15分解,一15的所有因子的可能组合有以下四种:

(1, -15), (-1, 15), (3, -5), (-3, 5)

把这四组数分别代入上面括号中的2x和 x的后面,发现(3,-5)是唯一的一组合适 的数据,也即原方程可写成:

(2x+3)(x-5)=0即 2x+3=0 或 x-5=0,也即 x=- $\frac{3}{2}$, 或 x=5

2. Quadratic Equations that Can't be Factored(不能分解因式的二次方程)

并不是所有的二次方程都可用分解因式的方法给予求解,当二次方程不能用分解因式法解时 就要运用二次方程的求根公式来解。对于 *ax*² + *bx*+*c*=0 形式的一元二次方程,其解可用求根公 式表示如下:

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \quad x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

当 $b^2 - 4ac = 0$ 时,方程有两个相等的根;当 $b^2 - 4ac > 0$ 时方程有两个不相等的根;当 $b^2 - 4ac < 0$ 时,方程在实数的范围内没有根。

二次方程的两个根具有两个非常重要的性质,即:

94

(1)
$$x_1 + x_2 = -\frac{b}{a}$$
, (2) $x_1 \cdot x_2 = -\frac{c}{a}$

例 14: 求 $x^2 - 8x + 9 = 0$ 的根。

解:把 a=1, b=-8, c=9 代入求根公式 可得.

$$x = \frac{-(-8) \pm \sqrt{8^2 - 4 \times 1 \times 9}}{2 \times 1} = \frac{8 \pm 2\sqrt{7}}{2} = 4 \pm \sqrt{7}$$

四、Non-Linear Equations with Two Variables(二元非线性方程)

在数学中,求二元非线性方程的解是非常复杂的,但在 GMAT 考试中所遇到的有关二元非 线性方程的题都相当简单,一般说来他们都遵循一定的原则。要正确解答这一方面的题目,你只 要记住以下三条普遍原则即可:

Sum of two variables, squared: $(x+y)^2 = x^2 + 2xy + y^2$ Difference of two variables, squared: $(x-y)^2 = x^2 + 2xy - y^2$ Difference of two squares: $x^2 - y^2 = (x+y)(x-y)$

例 15: 若 x² - y² = 100, 且 x+ y=2, 那解: 由已知可得: x² - y² = (x+y)(x-y)=100公 x- y 的值是多少?把 x+ y=2 代入可得 x- y=50

五、Equations that Can't be Solved(不可求解的方程)

不是所有的一元方程都是可求解的,同理不是所有的二元线性方程组都是可求解的。在 GMAT考试中通常涉及到三种不可求解的方程:

1. Identities(等同方程)

2. Quadratic Equations in Disguise(伪装的二次方程)

3. Equivalent Equations(同等方程)

1. Identities(等同方程)

在考试中一定要当心那些可化简为 0=0 形式的方程,要知道这样的方程是不可解的。例如 方程 3*x*-3-5*x*=*x*-7-3*x*+4,把方程的两边化简后,我们可以得到下式:

$$-2x-3=-2x-3$$

$$0 = 0$$

所以 x 可以是任意的实数。

2. Quadratic Equations in Disguise(伪装的二次方程)

有一些方程看起来象似线性方程(不包含指数项的未知数),实际上是二次方程。用求解线性 方程的方法是不能求得此类方程的解的,这类方程的解只能化为二次方程后用解二次方程的方法 来解决。对 GMAT 考试来说有两种情况需要注意:

① The same variable inside a radical also appears outside:

$$\sqrt{x} = 5 x \Rightarrow (\sqrt{x})^2 = (5x)^2 \Rightarrow x = 25^2$$
$$\Rightarrow 25x^2 - x = 0$$

② The same variable that appears in the denominator of a fraction also appears elsewhere in the equation(在一个分式的分母中出现的那个变量在方程其他的地方也出现了)。

3. Equivalent Equations(同等方程)

在某些情况下两个方程看起来象是一个二元一次线性方程组,而实际上它们只是同一个方程 的不同表达方式。

例如:

$$a+b=30$$

$$2b = 60 - 2a$$

第二个方程经过化简后变为 a+b=30。由此可知,两个方程实际上是同一个方程。

TIME SAVER: When you encounter any Quantitative Comparison question that calls for solving one or more equations, stop in your tracks before taking pencil to paper. Size up the equation to see whether it's one of the three unsolvable animals you learned about here. If so, then unless you're given more information the correct answer must be (D).

第七节 Algebraic Inequalities (代数不等式)

不等式是表示两个量或两个表达式不等关系的式子。关系式 A \neq B, A<B, A>B, A>B 和 A \leq B分别表示 A 不等于 B、A小于 B、A大于 B、A大于或等于 B(或 A不小于 B)和 A小于或 等于 B(或 A不大于 B)。不等式可以分为条件不等式(condition inequalities)和绝对不等式(absolute inequalities)。例如 $x^2 + 2 \leq 3x$ 是条件不等式(因为它只当 $1 \leq x \leq 2$ 时才成立);又如 $x^2 + 1 > 0$ 是 绝对不等式(因为它对任何实数都成立)。单独一个不等式不可能确定变量值,只能定出变量范围, 但一个不等式组或绝对值不等式很有可能使变量值固定。

一、不等式的性质:

1. 若 a>b, b>c, 则 a>c;

2. 若 a > b, 则 a + c > b + c;

3. 若 *a*>*b*, *c*>*d*, 则 *a*+*c*>*b*+*d*(即两个或几个同向不等式两边分别相加,所得不等式与原不等式同向);

4. 若 a>b, c>0, 则 ac>bc;

5. 若 *a*>*b*, *c*<0,则 *ac*<*bc*;

 6. 若 a>b>0, c>d>0, 则 ac>bd(即两个或几个两边都是正数的同向不等式两边分别相乘, 所得的不等式与原不等式同向);

7. 若 a > b > 0,且 n 为大于 1 的整数,则 $a^n > b^n$; 8. 若 a > b > 0,且 n 为大于 1 的整数,则 $\sqrt[n]{a} > \sqrt[n]{b}$; 9. 若 0 < a < b,且 m 为大于零的数,则 $\frac{a+m}{b+m} > \frac{a}{b}$; 10. 若有 $\frac{a_1 + a_2}{b_1 + b_2} > \frac{a_1}{b_1} \Rightarrow \frac{a_2}{b_2} > \frac{a_1}{b_1}$,

 $\frac{a_1+a_2}{b_1+b_2} = \frac{a_1}{b_1} \Rightarrow \frac{a_2}{b_2} = \frac{a_1}{b_1},$

$$\frac{a_1+a_2}{b_1+b_2} < \frac{a_1}{b_1} \Rightarrow \frac{a_2}{b_2} < \frac{a_1}{b_1} \circ$$

二、绝对值不等式的基本性质 1. |ab| = |a| |b|2. $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}$ 3. $|x| \le a \Leftrightarrow -a \le x \le a, a > 0$ 4. $|x| \ge a \Leftrightarrow x \ge a$ 或 $x \le -a, a > 0$ 5. $a \le |x| \le b \Leftrightarrow a \le x \le b$ 或 $-b \le x \le -a$, 其中a > b > 06. $||a| - |b|| \le |a+b| \le |a| + |b|$ 7. $||a| - |b|| \le |a-b| \le |a| + |b|$

三、不等式的解法

You can solve algebraic inequalities in the same manner as equations. Isolate the variable on one side of the equation, factoring and canceling wherever possible. As in solving an equation, the same number can be added to or subtracted from both sides of the inequality, or both sides of an inequality can be multiplied or divided by a positive number without changing the truth of the inequality. However, multiplying or dividing an inequality by a negative number reverses the order of the inequality.

象解方程一样,一元一次不等式总可以通过去括号,去分母,移项,合并同类型,化为 *ax*>b形 式的不等式,其解的情况是:

当 $a \ge 0$ 时, $x \ge \frac{a}{b}$, 当 $a \le 0$ 时 $x \le \frac{a}{b}$ 当 a = 0 时, 若 $b \le 0$,则解为一切实数; 若 $b \ge 0$ 时不等式无解。

例 15: 求解不等式 $\frac{4x-2}{-5}$ >2 解: $\frac{4x-2}{-5}$ >2 $\Rightarrow 4x-2 < -10$ $\Rightarrow 4x < -8 \Rightarrow x < -2$

四、不等式求解时的注意事项

1. 若不等式两边同乘以负号,不等号要改变方向;

2. 对于绝对值不等式,当把绝对值符号展开时,要写清不等式的范围;

例 16: 求解不等式, |x-4| < 3, |x-4| > 3解: $|x-4| < 3 \Rightarrow -3 < |x-4| < 3$ $\Rightarrow 1 < x < 7$ $|x-4| > 3 \Rightarrow x-4 > 3$ 或 x-4 < -3 $\Rightarrow x > 7$ 或 x < 1

第八节 Functions (函数)

一、定义

设在某变化过程中的两个变量(variable) x 和 y, y 随 x 而变化,而且依赖于 x。如果变量 x取某个特定的值, y依确定的关系取相应的值,则称 y是 x 的函数。记作 y = f(x),其中 x称为 自变量(independent variable), y称为因变量(dependent variable)。x 的变化范围称为函数的"定 义域",与 x 对应的 y 的取值称为"函数值",其全体称为函数的"值域"。GMAT 数学考试中会 出现诸如括号、圆圈和方框等各种形式的函数表达式。

An algebraic expression in one variable can be define a function of that variable. A function is denoted by a letter such as f or g along with the variable in the expression. For example, the expression $x^3 + 3x^2 - 4$ defines a function f that can be denoted by

$$f(x) = x^3 + 3x^2 - 4$$

The expression $\frac{\sqrt[3]{5z-2}}{3z+8}$ defines a function g that can be denoted by

$$g(z) = \frac{\sqrt[3]{5z-2}}{3z+8}$$

Once a function f(x) is defined, it is useful to think of the variable x as an input and f(x) as the output. A given expression defines a function if there is no more than one output for a given input. However, more than one input can give the same output; For example, if f(x) = |2x-4|, then f(3) = f(1) = 2

二、Function Notation(函数的表示方法)

The symbols "f(x)" or "g(x)" do not represent products; each is merely the symbol for an expression, and is read "f of x" or "g of z". Function notation provides a short way of writing the result of substituting a value for a variable. If x=1 is substituted in $f(x) = x^3 + 3x^2 - 4$, the result can be written f(1)=0, and f(1) is read the "value of f at x=1". Similarly, if z=0 is substituted in the second expression, the value of g at z=0 is $g(0) = -\frac{\sqrt[3]{2}}{8}$.

"f(x)"和"g(x)"仅是函数表达的符号,函数还可以有其他的方式来表达。在GMAT数学 考试中会出现诸如括号、圆圈和方框等各种形式的函数表达式了考题。考题中经常给出一些特殊 符号来定义各种函数,例如: $x \Box y = x^2 - y^2$,那么□表达了 x = y之间的运算关系,3□2=3² - 2²=9-4=5;再如 $x^* = \frac{1}{x}$,则 $\left[\left[\left[\frac{1}{2}\right]^*\right]^*\right]^* = 2$ 。

三、Domain of a Function(函数的定义域)

函数的定义域是指函数中自变量所允许的取值范围。例如函数 $f(x) = x^3 + 3x^2 - 4$ 的定义域是 98

全体实数;函数 $g(z) = \frac{\sqrt[3]{5z-2}}{3z+8}$ 的定义域是 $z \neq -\frac{8}{3}$;函数 $f(x) = \sqrt{1-x^2}$ 的定义域是 $-1 \leq x \leq 1$, 也可表示为[-1,1]。另外我们还可设定函数的定义域,例如我们可以设定函数 $f(x) = x^3 + 3x^2 - 4$ 的定义域是 $-2 \leq x \leq 3$ 。

第九节 数学归纳法

用数学归纳法证明一个与自然数有关的命题的步骤是:

(1) 证明当 n 取第一个值 n₀ 时结论正确;

(2) 假设当 n = k ($k \ge n_0$)时结论正确,证明当 n = k+1时结论也正确。

以上是用数学归纳法的步骤,在考试中虽然并不要求用数学归纳法去解题,但是却会考到对 数学归纳法的概念的理解。

例 17: 若一个集合中含有自然数 3,则以 下哪个选项可以帮助判断是否所有是 3 的倍数 的自然数都在这一集合中

(I)如果自然数 n 在这个集合中,则n+3 也在这个集合中

(Ⅱ)如果自然数 n 在这个集合中,则
 n-3 也在这个集合中

(A) I only	(B) ∏ only
(C) I and Ⅱ	(D) none

解:因3已在这一集合中了,而3是3 的1倍,实际上完成了上述数学归纳法中的 第(1)步,这时 I 中指出当 n在集合中,n+3也在集合中,由此完成了上述数学归纳法的 第(2)步,因从 3→6 在,从 6→9 在……,所 有是 3 的倍数的自然数就都在集合中了,而 II 中与数学归纳法中第(2)步指出的正好相反 了,应往大走($k \ge n_0$)而不应往小,因而答案 为(A)。

第十节 极 限

在 GMAT 考试中,一般说来是不会涉及到求极限方面的问题,但笔者认为极限这一概念考 生还是应该了解的,下面将通过举例来讲解一下极限问题。

例 18:
$$a_n = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}$$
, 问当 $n =$

1,000时, *a_n*的值约等于多少?

解:很多考生在做这道题时想通过尝试几个值而猜一个答案,这是不对的。实际上原题问n=1,000时, a_n 的值,这时n的值非常大,因此可以认为:

$$a_{n-1000} = a_{n-1000-1}, \text{ff} a_{n-1000} = 1 + \frac{1}{1 + \frac{1}{1 + \cdots}} (1000 \text{ /})$$

$$a_{n=1000-1} = 1 + \frac{1}{1 + \frac{1}{1 + \dots}} (1000 - 1 \ \uparrow) \quad \textcircled{2}$$

从上面的两个式子中,可以看出①式中的
分式的分母部分就是
$$a_{n=1000-1}$$
,因而有 $a_{n=1000} =$
 $1 + \frac{1}{a_{n=1000-1}}$,前已述及 $a_{n=1000} = a_{n=1000-1}$,从而
有 $a_{n=1000} = 1 + \frac{1}{a_{n=1000}}$,转化为解一个类似于 x
 $= 1 + \frac{1}{x}$ 的方程。

第十一节 重点试题精练及解析

 $\begin{array}{c} x - y = 3 \\ 2 x = 2 y + 6 \end{array}$

The system of equations above has how many solutions?

(A) None

1.

- (B) Exactly one
- (C) Exactly two
- (D) Exactly three
- (E) Infinitely many

2. If
$$\frac{x}{y} = 2$$
, then $\frac{x-y}{x} =$
(A) -1 (B) $-\frac{1}{2}$
(C) $\frac{1}{2}$ (D) 1
(E) 2

- 3. If x, y, and z are positive integers and 3x =4y=7z, then the least possible value of x+y+z is
 - (A) 33
 - (B) 40
 - (C) 49
 - (D) 61
 - (E) 84

- 上面的方程组(system of equations)有多少 个解?
- 解:本题的正确答案为(E)。大多数考生会认 为该二元一次线性方程级只有一组解,从 而会误选(B)。但仔细分析后就会发现, 题目中所给出的两个方程,实际上是一个 方程,第二个方程与第一个方程是完全等 价的,第二个方程经移项后将变为 x-y =3,因此将有无穷多组 x 和 y 满足此方 程。
- 2. 解:本题的正确答案为(C)。

$$\frac{x}{y} = 2 \Rightarrow \frac{y}{x} = \frac{1}{2},$$

$$fi \lor x \frac{x-y}{x} = 1 - \frac{y}{x} = 1 - \frac{1}{2} = \frac{1}{2}$$

- 3. 若 x, y和 z都是正整数(positive integer), 且 3x=4y=7z,那么 x+y+z的最小值 是多少?
- 解:本题的正确答案为(D)。若要使 x, y和 z 都是整数且满足 3x=4y=7z,则 x 应能被 4和7整除, y 应能被 3和7整除,同理 z 要能被 3和4整除,又因为 3,4,7为互 质数,所以 x, y和 z的最小值分别为4×7 =28,3×7=21和3×4=12。由此可知 x +y+z的最小值为:28+21+12=61

4. The cost C of manufacturing a certain product can be estimated by the formula C=0. 03rst², where r and s are the amounts, in pounds, of the two major ingredients and t is the production time in hours. If r is increased by 50 percent, s is increased by 20 percent, and t is decreased by 30 percent, by approximately what percent will the estimated cost of manufacturing the product change?

(A) 40%	increase	(B)	12%	increase
------------	----------	-----	-----	----------

(C) 4% increase (D) 12% decrease

- (E) 24% decrease
- 5. An infinite sequence of positive integers is called an "alpha sequence" if the number of even integers in the sequence is finite. If S is an infinite sequence of positive integers, is S an alpha sequence?
 - (1) The first ten integers in S are even.
 - (2) An infinite number of integers in S are odd.

- 6. For a group of n people, k of whom are of the same sex, the expression n people, k of whom are of the same sex, the expression n people is not sex, the expression in group dynamics for members of that sex. For a group that consists of 20 people, 4 of whom are females, by how much does the index for the females exceed the index for the males in the group?
 - (A) 0.05
 - (B) 0.0625
 - (C) 0.2

- 4. 生产某件产品的成本 C可以通过公式 C= 0.03 rst² 来估计,其中 r和 s是该产品的 两种主要成分的磅数,t是生产该产品所 有的小时数。若 r 增加 50%,s 增加 20%,且 t减少 30%,则生产该产品的估 计成本将改变大约百分之多少?
- 解:本题的正确答案为(D)。变化后的 r, s和 t 分别为 1.5r, 1.2 s, 0.7t,根据题意可得 该产品的估计成本变化的百分比为: $\frac{0.03rst^2 (1-1.5 \times 1.2 \times 0.7^2)}{0.03rst^2} \times 100\% =$ 11.8%又因为 1.5×1.2×0.72<1,所以 成本将减少大约 12%。
- 5. 若一个无穷(infinite)正整数列中的偶数的数目是有限的,则该数列被称为 α 数列。若 S 是一个无穷正整数的数列,问 S 是一个 α 数列吗?
 (1) S 中的前 10 个整数是偶数

(2) S中的奇数的数目是无限的

- 解:本题的正确答案为(E)。(1)不充分,因为从(1)无法判断该数列中偶数的数目是否有限;(2)不充分,因为(2)只知道该数列中奇数的数目是无限的,偶数的数目是否有限,并无法得知;(1)+(2)也同理不能充分地回答题目中的问题。
- 6. 在一群由 n个人组成的人群中,有 k个人 是同一性别的,表达式^{n-k}所生成的指数 表示该性别成员的群体动态的某一现象。 一个由 20 个人组成的人群中,有 4 个是 女性,问该群体的女性指数超出该群体的 男性指数多少?
- 解:本题的正确答案为(E)。这20个人中,女 性有4人,则男性有16人,所以根据题 意可得该群体的女性和男性指数分别为:

女性指数=
$$\frac{n-k}{n}$$
= $\frac{20-4}{20}$ = $\frac{16}{20}$ =0.8;

7.

In the addition problem above, each of the symbols \Box , \triangle , and \bigstar represents a positive digit. If $\Box < \triangle$, what is the value of \triangle ?

- (1) $\bigstar = 4$
- (2) $\square = 1$
- 8. A certain used-book dealer sells paperback books at 3 times dealer's cost and hardback books at 4 times dealer's cost. Last week the dealer sold a total of 120 books, each of which had cost the dealer \$ 1. If the gross profit (sales revenue minus dealer's cost) on the sale of all of these books was \$ 300, how many of the books sold were paperbacks?

- (B) 60
- (C) 75
- (D) 90
- (E) 100

9.
$$\frac{\left(\frac{a}{b}\right)}{c}$$

In the expression above, *a*, *b*, and *c* are different numbers and each is one of the numbers 2, 3, or 5. What is the least possible value of the expression?

(A)
$$\frac{1}{30}$$
 (B) $\frac{2}{15}$ (C) $\frac{1}{6}$

男性指数= $\frac{n-k}{n}$ = $\frac{20-16}{20}$ = $\frac{4}{20}$ =0.2; 所以其差为 0.8-0.2=0.6。

- 在左面的加法问题中,每一个符号□,
 △,★都代表一个正的数字。若□<△,
 那么△的值是多少?
- 解:本题的正确答案为(A)。根据题意可知, 上面的加法问题表示两个一位正整数的和
 等于一个一位的正整数,即□+△=★,
 □,△,★都是小于10而大于0的整数。
 (1)充分,因为根据★=4,且□<△,可
 推知只有在△=3,□=1时,才能使上面
 符号所代表的加法问题成立;(2)不充分,
 因为当□=1时,△可取多个值。
- 某一个旧书商人以他的成本价的3倍买平 装本的书,以他的成本价的4倍买精装本 的书。这个书商上星期共买了120本书, 每本书都是该书商花1美元进的。若销售 这些书的毛利(销售收入减去书商的成本) 是300美元,则该书商买了多少本平装本 的书?
- 解:本题的正确答案为(B)。设该书商买了 x 本平装本的书,买了 y本精装本的书,则 根据题意可得下面的方程组:

$$x + y = 120$$

3x + 4y = 300 + 120

解这个两元一次方程组可得x = 60本, y = 60本。

 在左面的表达式中, a, b和 c 是不同的 数,且每一个都是数字 2,3 和 5 中的一 个,问这个表达式的最小值是多少?

解:本题的正确答案为(B)。先把繁分化简:

要使该表达式值最小,则 bc 取最大值 15, a 取最小值 2。
(D)
$$\frac{3}{10}$$
 (E) $\frac{5}{6}$

- 10. A certain fraction is equivalent to $\frac{2}{5}$. If the numerator of the fraction is increased by 4 and the denominator is doubled, the new fraction is equivalent to $\frac{1}{3}$. What is the sum of the numerator and denominator of the original fraction?
 - (A) 49
 - (B) 35
 - (C) 28
 - (D) 26
 - (E) 21
- 11. Are all of the numbers in a certain list of 15 numbers equal?
 - The sum of all of the numbers in the list is 60.
 - (2) The sum of any 3 numbers in the list is 12.

12.
$$\frac{1}{2^{10}} + \frac{1}{2^{11}} + \frac{1}{2^{12}} + \frac{1}{2^{12}} =$$

(A) $\frac{1}{2^7}$ (B) $\frac{1}{2^8}$ (C) $\frac{1}{2^9}$
(D) $\frac{1}{2^{13}}$ (E) $\frac{1}{2^{45}}$

13. For a light that has an intensity of 60 candles at its source, the intensity in candles, S, of the light at a point d feet from the source is given by the formula $S = \frac{60k}{d^2}$, where k is a constant. If the intensity of the light is 30 candles at a distance of

- 10. 某一分数(fraction)的值等于²/₅。若该分数的分子(numerator)增加4,且分母(denominator)增加1倍,则新分数的值等于 ¹/₃。问原分数的分子与分母的和是多少?
 解:本题的正确答案为(E)。设原分数的分子
 - 为 x 分母为 y,则根据题意可得: (1) $\frac{x}{y} = \frac{2}{5}$ (2) $\frac{x+4}{2y} = \frac{1}{3}$ 由方程(1) 可得 2y = 5x,把它代入方程 (2) 可得 $\frac{x+4}{5x} = \frac{1}{3} \Rightarrow x = 6$, y = 15,所以 原分数的分子与分母的和为 x+y=21。
- 某一数列中的 15 个数字都相等吗?
 (1)该数列中所有数字的和是 60;
 (2)该数列中任 3 个数字的和是 12。
- 解:本题的正确答案为(B)。(1)不充分,因为 根据所有数字的和为 60 无法判断该数列 中的 15 个数字是否都相等;(2)充分,由 任 3 个数的和都为 12,可以推知,只有在 每一个数都等于 4 时,才能满足这一条 件。
- 12. 解:本题的正确答案为(C)。

$$\frac{1}{2^{10}} + \frac{1}{2^{11}} + \frac{1}{2^{12}} + \frac{1}{2^{12}} = \frac{1}{2^9} \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} \right) = \frac{1}{2^9}$$

13. 一束光在光源处的强度为 60 烛光,以烛 光为单位,距该光源 d 英尺处的光的强度 可由公式 S= 60k/d²来表示,其中 k 是一个 常数。若距该光源 2 英尺远地方的光的强 度是 30 烛光。则距该光源 20 英尺远的地 方的光的强度是多少? 2 feet from the source, what is the intensity of the light at a distance of 20 feet from the source?

(A)
$$\frac{3}{10}$$
 candle
(B) $\frac{1}{2}$ candle
(C) $1 \frac{1}{3}$ candles
(D) 2 candles
(E) 2 candles

14. If s_1 , s_2 , s_3 \cdots is the sequence such that $s_n = \frac{n}{n+1}$ for all positive integers n, then the product of the first 10 terms of this sequence is

(A)
$$\frac{1}{(10)(11)}$$
 (B) $\frac{1}{11}$
(C) $\frac{1}{10}$ (D) $\frac{9}{10}$
(E) $\frac{10}{11}$

- 15. If r⊙ s=rs+r+s, then for what value of s is r⊙ s equal to r for all values of r?
 (A) -1
 - (B) 0
 - (C) 1

(D)
$$\frac{1}{r+1}$$

1

- (E) *r*
- 16. Mr. Kramer, the losing candidate in a two-candidate election, received 942,568 votes, which was exactly 40 percent of all the votes cast. Approximately what percent of the remaining votes would he need to have received in order to have won at least 50 percent of all the votes cast?

(A) 10%	(B) 12 [%]	(C) 15%
(D) 17%	(E) 20%	

解:本题的正确答案为(A)。解答此题的关键 是对题意的正确理解。2英尺远处的光强 为 30 烛光,代入光强的表达式求出 k:

$$30 = \frac{60 k}{2^2} \Rightarrow k = 2$$

则距光源20英尺的地方的光强为:

$$S = \frac{60 \times 2}{20^2} = \frac{3}{10}$$

- 14. 若 s_1 , s_2 , s_3 , 是一个通项为 $s_n = \frac{n}{n+1}$ 的数列(sequence),其中 n为任意正整数,那么该数列前 10 项的乘积是多少? 解:本题的正确答案为(B)。由通项公式可知此数列的首项为 $\frac{1}{2}$,第十项为 $\frac{10}{11}$,该数列的每一项的分子都等于前一项的分母,因此在相乘时都可约去,最后乘积的结果是首项的分子除以最后一项的分母,所以该数列前十项的乘积是 $\frac{1}{11}$ 。
- 15. 若 r⊙ s= rs+r+s, 那么 s 取何值时才能 使对于所有的 r 都有 r⊙ s 等于 r?

解:本题的正确答案为(B)。由题意可得: $r \odot s = rs + r + s = r$ $\Rightarrow s(r+1) = 0$ 因此当 s=0 时能使对于所有的 r都有 $r \odot s$

- 等于 r。
- 16. Karmer 先生是两个候选人中的落选者, 获得了 942,568 张选票,恰好占总投票数 的 40%。为了能至少获得总选票的 50%, 他还需要从其余的选票中得到大约百分之 多少的选票?
- 解:本题的正确答案为(D)。该题中的942,568 是无用的干扰信息。设他还需要从其余的 选票中得到大约百分之 x的选票,根据题 意可得:

 $40\% + (1 - 40\%) x \ge 50\% \Rightarrow x \ge 16.7\%$

- 17. When an object is dropped, the number of feet N that it falls is given by the formula N=1/2 gt², where t is the time in seconds since it was dropped and g is 32. 2, if it takes 5 seconds for the object to reach the ground, how many feet does it fall during the last 2 seconds?
 - (A) 64.4
 - (B) 96.6
 - (C) 161.0
 - (C) 257.6
 - (E) 402.5
- 18. For all real numbers v, the operation v* is defined by the equation v* = v v/3. If (v*)*=8, then v=
 (A) 15
 (B) 18
 (C) 21
 (D) 24
 (E) 27
- 19. If C is the temperature in degrees Celsins and F is the temperature in degrees Fahrenheit, then the relationship between temperatures on the two scales is expressed by the equation 9C=5(F-32). On a day when the temperature extremes recorded at a certain weather station differed by 45 degrees on the Fahrenheit scale, by how many degrees did the temperature extremes differ on the Celsius scale?
 - (A) $\frac{65}{9}$ (B) 13
 - (C) 25 (D) 45
 - (E) 81

- 17. 当一个物体下落时,下落的英尺数 N 由公式 N=1/2 gt² 来表示,其中 t 是该物体的下落时间,单位为秒,g为 32.2,若该物体下落 5 秒钟后到达地面,问它在最后的两秒下落的距离是多少英尺?
- 解:本题的正确答案为(D)。根据题意可知, 前3秒钟该物体下落的距离为: $N=\frac{1}{2}g \cdot t^2 = \frac{1}{2} \times 32.2 \times 9 = 144.9$ 英尺 同理5秒种该物体下落的距离为: $N=\frac{1}{2}g \cdot t^2 = \frac{1}{2} \times 32.2 \times 25 = 402.5$ 英尺 最后2秒下落的距离等于5秒钟下落的距 离减去前3秒下落的距离: 402.5-144.9=257.6 英尺。
- 18. 对于所有的实数(real number)v,运算 v* 由等 式 v* = $v - \frac{v}{3}$ 来定义。若(v*)* =8,则 v= 解:本题的正确答案为(B)。根据定义可得: $(v^*)^* = v^* - \frac{v^*}{3} = 8 \Rightarrow v^* = 12$ 再运用定义可得: $v^* = v - \frac{v}{3} = 12 \Rightarrow v = 18$
- 19. 若 C 是摄氏温度,而 F 是华氏温度,则这 两种温度制之间的关系为 9C=5(F-32)。 某一天某一气象站记录下来的华氏温度的 最大值和最小值相差为 45 度,那么摄氏 温度的最大和最小温度差是多少?
- 解:本题的正确答案为(C)。根据 C= $\frac{5}{9}$ (F-32) 可得 ΔC= $\frac{5}{9}$ ΔF 把 ΔF 代入上式可得:ΔC= $\frac{5}{9}$ ×45=25

- **20.** If \odot denotes a mathematical operation, does $x \odot y = y \odot x$ for all x and y?
 - (1) For all x and y, $x \odot y = 2(x^2 + y^2)$
 - (2) For all y, $0 \odot y = 2y^2$
- **21.** If $y \neq 3$ and $\frac{3x}{y}$ is a prime integer greater than 2, which of the following must be true?
 - I. x = y
 - $[\![. y = 1$
 - \blacksquare . x and y are prime integers.
 - (A) None
 - (B) I only
 - (C) **∏** only
 - (D) Ⅲ only
 - (E) I and III
- 22. The only contents of a parcel are 25 photographs and 30 negatives. What is the total weight, in ounces, of the parcel's contents?
 - The weight of each photograph is 3 times the weight of each negative.
 - (2) The total weight of 1 of the photographs and 2 of the negatives is $\frac{1}{3}$ ounce.

- 若 ⊙ 表示一数学运算,对于所有的 *x* 和 *y*,
 x ⊙ *y* = *y* ⊙ *x* 吗?
- 解:本题的正确答案为(A)。(1)充分,根据 x $\odot y=2(x^2+y^2)$ 可得 $y\odot x=2(y^2+x^2)=$ $2(x^2+y^2)=x\odot y$ 。(2)不充分,因为根据 $0\odot y=2y^2$ 得不出有关 $x\odot y$ 或 $y\odot x$ 的信息。
- 21. 若 y≠3, 且^{3x}/_y是一个大于2的质数(prime integer),下列哪一个一定正确?
 I. x=y
 I. y=1
 Ⅲ. x和y都是质数
 解:本题的正确答案为(A)。在回答用 must be 提问的题时,最好用排除法。题目中的 三个条件都可以通过此方法给予否定。当

x=10, y=6时, $\frac{3x}{y}=5$ 满足题目中的条件, 由此便可得知, 题干中给出的三个条件没有一个是一定正确的。

22. 一包裹中仅含有 25 张照片和 30 张底片。
问包裹中东西的总重量是多少盎斯?
(1)每张照片的重量是每张底片重量的 3 倍;
(2)1张照片与 2 张底片的总重量是 ¹/₃盎斯。

解:本题的正确答案为(C)。设照片的重量为 x 盎斯,底片的重量为 y 盎斯,则由(1) 可得: $\frac{x}{y}$ =3,由(2)可得 x+2y= $\frac{1}{3}$ 。很 明显单独根据(1)或单独根据(2)都不能解 出 x和 y的值来,所以(1)和(2)单独都不 充分;把(1)和(2)相结合可得一个两元一 次方程组,从而可求出 x= $\frac{1}{5}$,y= $\frac{1}{15}$, 包裹中的东西总重量为: $25 \times \frac{1}{5} + 30 \times \frac{1}{15}$ =7 盎斯,所以(1)+(2)充分。

Of the four numbers represented on the number line above is r closest to zero?

$$\begin{array}{c} (1) \ q = -s \\ (2) - t < q \end{array}$$

- 24. If represents one of the operations +, -, and \times , is $k \cdot (1+m) = (k \cdot 1) +$
 - $(k \cdot m)$ for all numbers k, 1 and m?
 - (1) $k \cdot 1$ is not equal to $1 \cdot k$ for some numbers k.
 - (2) represents subtraction.

25. In a certain sequence, the first term is 1, and each successive term is 1 more than the reciprocal of the term that immediately precedes it. What is the fifth term of the sequence?

(A)
$$\frac{3}{5}$$
 (B) $\frac{5}{8}$
(C) $\frac{8}{5}$ (D) $\frac{5}{3}$
(E) $\frac{9}{2}$

26. If
$$x+y+z>0$$
, is $z>1$?
(1) $z>x+y+1$
(2) $x+y+1<0$

- **23.** 如左面数轴(number line)中所示的4个数中,r的值近似于0吗?
- 解:本题的正确答案为(A)。在GMAT的数 学考试中的数轴都是双向有箭头的,且其 数值是从左至右逐渐增大,并且在 GMAT的Data sufficiency中的图形在没 有指明的情况下,一定是drawn to scale, 由上图可以看出q,r,s和t之间的间距基 本相同。(1)充分,根据q=-s可知,q 和s互为相反数,而r以处在q和s的中 点位置,所以r的值一定接近于0;(2)不 充分,因为根据—t<q得不出r的情况。
- 24. 若・代表+, 一和×中的一种运算(operation),问对于所有的 k和 m, k・(l+m)=(k・l)+(k・m)吗?
 (1) 当 k取某些数时, k・1 与 1・k 不相等
 (2)・代表加法
- **解**:本题的正确答案为(D)。在加法,减法和乘 法这三个运算中只有减法不符合交换法则, 所以根据(1)可知・一定代表减法,所以 $k \cdot (l+m) = k - (l+m) = (k-l) - m \neq (k \cdot l)$ +($k \cdot m$)因此(1)充分地回答了 $k \cdot (l+m)$ 与 ($k \cdot l$)+($k \cdot m$)不相等;同理(2)也可充分地 回答 $k \cdot (l+m)$ 与($k \cdot l$)+($k \cdot m$)不相等。
- **25.** 某一数列的首项是 1,且其下一项是前一项的倒数加 1,问该数列的第五项是多少?

解:本题的正确答案为(C)。由题意可得:

$$a_1=1, a_2=1+1=2$$

 $a_3=\frac{1}{2}+1=\frac{3}{2}$
 $a_4=\frac{2}{3}+1=\frac{5}{3}$
 $a_5=\frac{3}{5}+1=\frac{8}{5}$

26. 如果 x+y+z>0,问 z是否大于1?
解:本题的正确答案为(B)。(1)不充分,因为 无法判断 x+y是否大于0;由 x+y+z>

107

- 27. If x=0. rstu, where r, s, t, and u each represent a nonzero digit of x, what is the value of x?
 - (1) r=3s=2t=6u

28.

(2) The product of r and u is equal to the product of s and t.

If the successive tick marks shown on the number line above are equally spaced and if x and y are the numbers designating the end points of intervals as shown, what is the value of y?

(1)
$$x = \frac{1}{2}$$
 (2) $y - x = \frac{2}{3}$

29. A man drove his automobile d₁ kilometers at the rate of r₁ kilometers per hour and an additional d₂ kilometers at the rate of r₂ kilometers per hour. In terms of d₁, d₂, r₁, r₂, what was his average speed, in kilometers per hour, for the entire trip?

(A)
$$\frac{d_1 + d_2}{d_1 + d_2}$$
 (B) $\frac{d_1 + d_2}{r_1 + r_2}$
(C) $\frac{d_1 + d_2}{r_1 + r_2}$ (D) $\frac{d_1 + d_2}{r_1 + r_2}$

0 可得 x+y>-z, 由(2)可得 x+y<-
1,综合以上两个不等式可得-z<x+y<
-1,即-z<-1,两边同乘以-1可得 z
>1,所以(2)是充分的。

- **27.** 若 *x*=0. *rstu*, 其中 *r*, *s*, *t* 和 *u* 每个都表示 *x* 的一个非零数字,问 *x* 的值是多少?
- 解:本题的正确答案为(A)。因为r,s,t和u 都是大于0且小于10的整数,所以根据 (1) r=3s=2t=6u可得r=6,s=2,t=3, u=1,从而可以得到 x=0.6231,所以 (1)充分;由(2)可得ru=st,在零到10 之间满足这个等式的r,s,t和u值很多, 所以(2)不充分。
- 28. 若左面数轴(number line)中连续的标记点 之间的距离相同,且 x和 y表示图中所示 的间隔的两个端点(end point),问 y的值 是多少?

解:本题的正确答案为(D)。从图中可以看出 x 处于 0 与 y 的之间,且 $y = \frac{7}{3}$,所以当 $x = \frac{1}{2}$ 时,可推知 $y = \frac{7}{6}$,因此(1)是充分的; 由 $y - x = \frac{2}{3}$ 可得 x 点的坐标为 $\frac{1}{2}$,所以 y 点的坐标为 $\frac{7}{6}$,因此(2)也是充分的。

- 29. 一个人以每小时 n 公里的速度开车行驶了 d₁ 公里,接着又以每小时 n₂ 公里的速度行 驶了 d₂ 公里。问他整个旅程的平均速度是 每小时多少公里(以 d₁, d₂, n₁, n₂ 来表示)?
- 解:本题的正确答案为(A)。总的平均速度等 于总路程除以总时间,这个人开车所行 驶的总路程为 $d_1 + d_2$,开车所用的总时 间为 $\frac{d_1}{r_1} + \frac{d_2}{r_2}$,所以其总的平均速度为: $\frac{d_1 + d_2}{d_1 + d_2}$

$$r_1$$
 r

- (E) It cannot be determined from the information given.
- **30.** A plane traveled *k* miles in the first 96 minutes of flight time. If it completed the remaining 300 miles of the trip in *t* minutes, what was its average speed, in miles per hour, for the entire trip?

(A)
$$\frac{60(k+300)}{96+t}$$
 (B) $\frac{kt+96(300)}{96t}$
(C) $\frac{k+300}{60(96+t)}$ (D) $\frac{5k}{8} + \frac{60(300)}{t}$
(E) $\frac{5k}{8} + 5t$

- 31. What is the lst term in sequence S?(1) The 3 rd term in S is 2.
 - (2) The 2 nd term in S is twice the 1 st, and the 3 rd term is three times the 2 nd.

- 32. If $x = y^2$, what is the value of y x? (1) x = 4
 - (2) x + y = 2

- 30. 一架飞机在飞行的前 96 分钟内飞行了 k 英里。若它在 t 分钟内飞完了剩下的 300 英里,那么它的整个旅程的平均速度(以 英里/小时来表示)是多少?
- 解:本题的正确答案为(A)。考生在做此题时,一定要注意单位的一致,先算出以英 P/分钟为单位的平均速度,再把此速度乘以60。该飞机飞行的总距离为<math>k+300英里,总时间为(96+t)分钟,所以根据 题意可得其整个旅程的平均速度为 $\frac{60(k+300)}{96+t}$ 。
- 31. 数列 S 的 首项 (the first term) 是多少?
 (1) S 的第三项是 2。
 (2) S 的第二项是第一项的 2 倍,第三项
 是第二项的 3 倍。
- 解:本题的正确答案为(C)。(1)不充分,因为不知道第三项与第一项之间有何种关系;(2)不充分,因为(2)中虽然给出了数列 S 的前三项之间的关系,但没给出具体值,所以也无法求出数列 S 的首项是多少;根据(1)+(2)可得,数列 S 的首项为第三项的1/6,即数列 S 的首项为1/3,所以(1)+(2)充分。
- **32.** 若 $x = y^2$,问 y x的值是多少?
- 解:本题的正确答案为(C)。根据(1)可求出 $y=\pm 2$,所以x+y的值不确定,因此(1) 不充分;根据(2)可求出y=1或y=-2, 所以(2)也不充分;根据(1)+(2)可得 y=-2, x=4,从而可求出y-x的值是 -6,所以(1)+(2)充分。

Which of the following inequalities is an algebraic expression for the shaded part of the number line above?

- (A) $|x| \leq 3$ (B) $|x| \leq 5$ (C) $|x-2| \leq 3$ (D) $|x-1| \leq 4$ (E) $|x+1| \leq 4$
- **34.** What percent of the employees of Company X are technicians?
 - Exactly 40 percent of the men and 55 percent of the women employed by Company X are technicians.
 - (2) At Company X, the ratio of the number of technicians to the number of nontechnicians is 9 to 11.

35. On a scale that measures the intensity of a certain phenomenon, a reading of n+1 corresponds to an intensity that is 10 times the intensity corresponding to a reading of n. On that scale, the intensity corresponding to a reading of 8 is how many times as great as the intensity corresponding to a reading of 3?

(A) 5 (B) 50 (C) 10^5 (D) 5^{10} (E) $8^{10} - 3^{10}$

- **36.** What is the value of $x^2 y^2$?
 - (1) x + y = 2x
 - (2) x+y=0

- **33.** 下列哪一个不等式 (inequalities) 是左面数 轴中阴影部分的代数表达式?
- 解:本题的正确答案为(E)。上面数轴中的阴 影部分可用不等式表达为:

- 34. 公司 X 中技术人员所占的百分比是多少?(1) 公司 X 的雇员中,恰好有 40%的男雇
 - 员和 55%的女雇员是技术人员
 - (2) 在公司 X,技术人员与非技术人员的 比例为 9:11
- 解:本题的正确答案为(B)。因为公司 X 的男 女雇员的比例不知道,所以根据(1)求不 出公司 X 中技术人员所占的百分比,也即 (1)不充分;根据(2)可求出技术人员所占 的百分比为:<u>9</u>11+9×100%=45%,所以 (2)充分。
- 35. 在一种度量 (measure) 某一现象的强度的 标度 (scale) 中, n+1 所对应的强度是 n所 对应的强度的 10 倍。在该标度中,8 所对 应于的强度是 3 所对应于的强度的多少 倍?
- 解:本题的正确答案为(C)。由 n+1 所对应的 强度是 n 的 10 倍可推知 8 所对应的强度 是 3 所对应的强度的 10⁵ 倍,
- **36.** *x*² *y*² 的值是多少?
- 解:本题的正确答案为(D)。由(1)可得x-y=0,从而可以得出 $x^2-y^2=(x-y)(x+y)=$ 0,所以(1)充分;由(2)也可得出 $x^2-y^2=$ (x-y)(x+y)=0,所以(2)也是充分的。

- **37.** If x and y are positive integers, is x > y? (1) $x^2 < y$
 - (2) $\sqrt{x} < y$

- 38. A rectangular circuit board is designed to have width w inches, perimeter p inches, and area k square inches. Which of the following equations must be true?
 - (A) $w^2 + pw + k = 0$
 - (B) $w^2 pw + 2k = 0$
 - (C) $2w^2 + pw + 2k = 0$
 - (D) $2w^2 pw 2k = 0$
 - (E) $2w^2 pw + 2k = 0$
- 39. If x, y and z are non-zero numbers such that 1≥y>x and xy=z, which of the following cannot be true?
 - (A) y > z
 - (B) y = z
 - (C) z = x
 - (D) x > z
 - (E) z > 0
- 40. On the day of the performance of a certain play, each ticket that regularly sells for less than \$10,00 is sold for half price plus \$0.50, and each ticket that regularly sells for \$10.00 or more is sold for half price plus \$1.00. On the day of the performance, a person purchases a total of y tickets, of which x regularly sell for \$9.00 each and the rest regularly sell for \$12.00

- **37.** 若 *x* 和 *y* 是正整数,问 *x*>*y*?
- 解:本题的正确答案为(A)。因为 x和 y 都是 整数,所以由 $x^2 < y$ 可以推出一定有 x < y,从而充分地回答了 x不大于 y,所 以(1)充分(注:对题目中的问题否定的回 答也是充分的回答);通过举例可以验证 (2)不充分,如对于满足 $\sqrt{x} < y$ 的 x = 1, y=2 有 x < y,而对于满足 $\sqrt{x} < y$ 的 x = 4, y=3,则有 x > y。
- 38. 若一个长方形的电路板 (circuit)的设计尺 寸为:宽 w英寸,周长为 p英寸,其面积 等于 k平方英寸,则下列哪一个方程一定 正确?
- 解:本题的正确答案为(E)。根据宽、周长和 面积之间的相互关系可以列出下面的等 式:

$$w\left(\frac{p}{2}-w\right) = k \Rightarrow 2w^2 - pw + 2k = 0$$

- **39.** 若 *x*, *y*和 *z*都是*非零数字*(**non-zero num-ber**), 且 1≥ *y*> *x*, *xy*= *z*, 问下面哪一项不可能正确?
- 解:本题的正确答案为(B)。因为当 y=z时, 将有 x=1 成立,而根据 $1 \ge y \ge x$ 可知, x=1 是不可能的,所以 y=z不能成立;又 因为 y 可以等于 1,所以 x=z 可以成立; $y \ge z$ 显然可以成立;(D)和(E)都可以通 过举例给予验证,如当 x=0.2, y=0.5时,有 $x \ge z$ 和 $z \ge 0$ 成立。
- 40. 在某一戏剧上演的某一天,每张通常售价 不到 10 美元的票被以通常票价的一半加 上 0. 5 美元的价格出售,且每张通常售 价在 10 美元或超过 10 美元的票被 以其通 常票价的一半加上 1 美元的价格出售。某 人共购买了 y张票,其中 x 张票通常售价 为 9 美元,其余票的通常售价为 12 美元, 问这个人为这些票一共付了多少钱?
- 解:本题的正确答案为(A)。根据题意可知 x

each. What is the amount paid, in dollars, for the y tickets?

(A)
$$7y-2x$$
 (B) $12x-7y$
(C) $\frac{9x+12y}{2}$ (D) $7y+4x$
(E) $7y+5x$

41. The function * is defined by the equation $a * b = \frac{ab}{b-a}$, where $a \neq b$. Which of the

following has a value of 3?

- (A) 1 * 3 (B) 3 * 0 (C) 2 * 6 (D) 6 * 2 (E) 4 * -1
- 42. If x ≤ y ≤ z and y − x ≥ 5, where x is an e-ven integer and y and z are odd integers, what is the least possible value of z − x?
 - (A) 6
 - (B) 7
 - (C) 8
 - (D) 9
 - (E) 10
- **43.** What is the maximum capacity in cups of a pail that contains only sand and is filled to three fourths of its capacity?
 - If one cup of sand were added to the pail, it would be filled to seveneighths of its capacity.
 - (2) If two cups were removed from the pail, it would be filled to one-half of its capacity.

张通常售价为9美元的票得付 $x(\frac{9}{2}+0.5)$ 美元;y-x张通常票价为12美元的票得 付的钱为 $(y-x)(\frac{12}{2}+1)$ 。所以此人总共 为票付了5x+7(y-x)=7y-2x。

- 41. 运算符号 "*" 被定义为等式 a * b =
 <u>ab</u>/_{b-a}, 其中 a≠b。问下列哪一个的值等于
 3?
- 解:本题的正确答案为(C)。把五个选项中的
 数分别代入运算符所代表的式子可发现:
 2*6=^{2×6}/₆₋₂=3
- 42. 若 *x*<*y*<*z*且 *y*−*x*>5, 其中 *x*是一个偶数, *y* 和 *z* 是奇数,问 *z*−*x*的最小值是 多少?
- 解:本题的正确答案为(D)。该题也即让考生求 在 x值一定时, z的最小值是多少,此时 y也应取最小值。设 x=m,其中 m是任一偶 数,则根据 y-x>5可得 y>m+5,再根 据 y是奇数可得 y的最小值可表示为 y=m+7,同理 z的最小值可表示为 z=m+9。 由以上分析可知 z-x的最小值等于 9。
- 43. 一个仅含有沙子,且沙子含量占其容量³/₄
 的桶中的沙子最多有多少杯?
 (1) 若向桶中加入1杯沙子,则桶中的沙 子将占其容量的⁷/₈
 (2) 若从桶中取出2杯沙子,则桶中的沙 子将占其容量的¹/₂
- 解:本题的正确答案为(D)。设这个桶的容量 为 a杯,则桶中的沙子为<u>3</u> a,根据(1)可 得:<u>3</u> a+1=<u>7</u> 8 a ⇒ a=8,从而可以求出 桶中的沙子是 6 杯,所以(1)充分;根据

- 出桶中的沙子是
 44. A certain theater has 100 balcony seats.
 For every \$2 increase in the price of a balcony seat above \$10, 5 fewer seats will be
 出桶中的沙子是
 44. 某剧院有 100 个
 位的价格在超过
 剧院将少卖 5 个
 - cony seat above \$10, 5 fewer seats will be sold. If all the balcony seats are sold when the price of each seat is \$10, which of the following could be the price of a balcony seat if the revenue from the sale of balcony seats is \$1,360?

(A) \$ 12	(B) \$ 14
(C) \$ 16	(D) \$ 17
(E) \$ 18	

- **45.** Vanda's Butcher Shop sells packages of ground turkey and ground beef. Is the price for a pound of ground turkey less than that for a pound of ground beef?
 - The price for a package of ground turkey is 30 percent greater than the price for a package of ground beef.
 - (2) A package of ground turkey weighs 25 percent more than a package of ground beef.

46. In a certain formula, p is directly proportional to s and inversely proportional to r. If p=1 when r=0.5 and s=2, what is the value of p in terms of r and s?

(2)可得 $\frac{3}{4}a-2=\frac{1}{2}a$ ⇒a=8,从而可以求 出桶中的沙子是6杯,所以(2)也充分。

- 44. 某剧院有 100 个包厢座位。每一个包厢座 位的价格在超过 10 美元时每增加 2 美元, 剧院将少卖 5 个座位。若包厢座位的单价 是 10 美元时,所有的包厢座位将被售出, 那么当包厢座位的总收入为 1360 美元时, 其单价可以是下面哪一项?
- **解**:本题的正确答案为(C)。设票价增加 x 美元, 则此时少卖了 $\frac{5}{2}x$ 个座位,根据题意可列出 下列方程: $(10+x)\left(100-\frac{5}{2}x\right)=1360$ $\Rightarrow x_1=6, x_2=24$

所以包厢座位的票价有两个值,分别为16 美元或34美元。

- 45. Vanda 肉店卖袋装的火鸡和牛肉。问一磅火鸡的价钱比一磅牛肉的价钱少吗?
 (1)一袋火鸡的价格比一袋牛肉的价格高30%
 (2) 优生产出、优化中美 45%
 - (2) 一袋火鸡比一袋牛肉重 25%
- 解:本题的正确答案为(C)。(1)中因不知道一 袋火鸡和一袋牛肉各自的重量是多少,所 以求不出是一磅火鸡贵还是一磅牛肉贵, 因此(1)不充分;(2)因不知道一袋火鸡和 一袋牛肉的价格,所以(2)也不充分;设 一袋牛肉的价格为 a,重量为 b,则一磅 牛肉的价格为 $\frac{a}{b}$,根据(1)+(2)可得一磅 火鸡的价格为 $\frac{(1+30\%)a}{(1+25\%)b} > \frac{a}{b}$,所以(1)+ (2)充分。
- 46. 在某一公式中, p和 s成正比(directly proportional), 且与 r成反比(inversely proportional)。若当 r=0.5 且 s=2 时, p=1,则下列哪一项是以 r和 s 所表达的 p 值?

(A)
$$\frac{s}{r}$$
 (B) $\frac{r}{4s}$
(C) $\frac{s}{4r}$ (D) $\frac{r}{s}$
(E) $\frac{4r}{s}$

- 47. If xy=-6, what is the value of xy(x+y)?
 (1) x-y=5
 - (2) $xy^2 = 18$

48. The operation * is defined as follows: $a * b = \frac{a+b}{a-b}$ for $a \neq b$.

What is the value of (6) * (4)?

(A) -5 (B) -1 (C) $\frac{1}{5}$ (D) 1 (E) 5

49.

The figure above represents the floor plan of an art gallery that has a lobby and 18 rooms. If Lisa goes from the lobby into room A at the same time that Paul

- 解:本题的正确答案为(C)。根据题意 p 可表 示为: $p=a\frac{s}{r}$ 再把 r=0.5, s=2和 p=1代入上式可得 $1=\frac{2}{0.5} \Rightarrow a=\frac{1}{4} \Rightarrow p=\frac{s}{4r}$
- 47. 若 xy=-6, 那么 xy(x+y)的值是多少? 解:本题的正确答案为(B)。(1)中的方程 x-y=5与方程 xy=-6 联立成二次方程组 可解出 x, y的值, 但是因为 xy=-6是 一个二次方程, 解得的 x和 y的值各有两 个,所以最终得到的 xy(x+y)的值也不 惟一,因此(1)不充分;虽然(2)中的 $xy^2=18 = 5xy=-6$ 所联立成的方程组也 是二次的, 但解方程仅可得到一个 y值, 即 y=-3, 由此 x也只有一个值为 2, 所 以可以求得 xy(x+y)的惟一值,所以(2) 充分。
- 48. 运算符号 "*" 被定义如下,对于所有的
 a≠b,有 a*b=a+b/(a-b)
 问(6)*(4)的值是
 多少?
- 解:本题的正确答案为(E)。根据定义把(6) *(4)直接代入 $a * b = \frac{a+b}{a-b}$ 可得: (6)*(4)= $\frac{6+4}{6-4}=5$
- 49. 左面的图形是一个艺术馆的地面布局方 案,该艺术馆由1个大厅和18个房间组 成。若L从大厅进入房间A的同时P从 大厅进入房间R,且每人都连续经过所有 的房间,从一个门进入而从另一个门出 去,问他们将同时处于哪一个房间?
 - (1) L 在每个房间中花 2x 分钟, P 在每个 房间中花 3x 分钟;

(2) L 比 P 在每个房间中少花 10 分钟。

解:本题的正确答案为(A)。由图可知, L和 P两个人经过房间的次序是一定的, 设他 goes from the lobby into room R and each goes through all of the rooms in succession, entering by one door and exiting by the other, which room will they be in at the same time?

- Lisa spends 2x minutes in each room and Paul spends 3x minutes in each room.
- (2) Lisa spends 10 minutes less time in each room than Paul does.
- **50.** If Pat bought a tennis shirt with matching shorts, what was the cost of the shirt?
 - The total cost of the shirt and shorts was \$20.
 - (2) The ratio of the cost of the shirt to the cost of the shorts was 2 : 3.

51. The concentration of a certain chemical in a full water tank depends on the depth of the water. At a depth that is x feet below the top of the tank, the concentration is 3

 $+\frac{4}{\sqrt{5-x}}$ parts per million, where 0 < x <

4. To the nearest 0.1 foot, at what depth is the concentration equal to 6 parts per million?

(A) 2.4ft	(B) 2.	5ft
(C) 2.8ft	(D) 3	.Oft
(E) 3.2ft		

52. On a certain 10-question test, each question after the first question is worth 2 points more than the previous question. If the greatest number of points that can be scored on the test is 100, how many points is the

们两人在L到达第 n个房间时相遇,则由(1)可得方程:

2xn = 3x(18 - n)

而由(2)可得到方程:

 $x \cdot n = (18 - n)(x + 10)$

在第一个方程中,两边可同时消掉 x 解出 n,所以(1)单独能够充分地回答问题;而第二个方程却存在两个未知数,所 以无法定出 n的值。

50. 若 Pat 买了一件网球衬衫和一个与之相配的短裤,问衬衫的价格是多少?
(1)衬衫与短裤的总花费是 20 美元
(2)衬衫的价格与短裤的价格比是 2:3

- 解:本题的正确答案为(C)。设衬衫的价格为 x美元,短裤的价格为 y美元,由(1)可得:x+y=20;由(2)可得 3x=2y;因此 很明显(1)和(2)单独都求不出 x 的值, (1)+(2)可得到一个二元一次方程组,从 而可求出 y=8美元,所以(1)+(2)充分。
- 51. 一水箱中的某种化学物质的浓度与水的深度有关:在低于水箱顶部 x(0<x<4)英尺的深度,其浓度为百万分之 3+ 4/√5-x。
 问在多深的位置该化学物质的浓度等于百万分之 6(近似到 0.1 英尺)?
- 解:本题的正确答案为(E)。"to the nearest" 是中文中用四舍五入的方法取近似值的意 思。

由题意可得:

$$3 + \frac{4}{\sqrt{5-x}} = 6 \Rightarrow x = 3.2$$

52. 在某一个由 10 个问题组成的测试中,从 第一个问题开始,每一个问题都比它前面 的问题多 2 分。若该测试最高只能得 100 分,问第八个问题是多少分?

解:本题的正确答案为(C)。根据题意可知,

eighth question	n worth?	
(A) 9	(B) 14	(C) 15
(D) 19	(E) 33	

53.

Each number in the arrangement above is obtained from the two nearest numbers in the column immediately to the left by subtracting the upper number from the lower number. What is the value of z?

(1) x=7 (2) t=5

- **54.** Is x^3 equal to 125?
 - (1) x > 4
 - (2) *x*<6

这 10 个问题的分数构成了一个等差数列, 设其首项为 a_1 , 公差 d=2, 共有 10 项, 其和 $S_n=100$, 由等差数列的求和公式可 得:

 $S_n = 10 a_1 + \frac{10(10-1)}{2} \times 2 = 100 \Rightarrow a_1 = 1$ $first a_8 = 1 + 7 \times 2 = 15$

- 53. 左图所排列的每一个数字都是由紧靠左边 一栏中两个最近的数字相减(用位置较低的数字减去位置较高的数字)而得到的。 问 z的值是多少?
- 解:本题的正确答案为(D)。根据题目中所述 及的运算法则可得:

 $x - 4 = z, \quad 8 - z = t$

因此不管是已知x的值,还是已知t的值都可求出一个z值,所以(1)和(2)中的每一个都是求出x值的充分条件。

54. x³等于 125 吗?

解:本题的正确答案为(E)。很明显(1)和(2)
单独都不充分;有些考生会根据(1)+(2)
得出4<x<6,从而得出x=5,最后断定x³等于125。显然这类考生都把x当作整数来处理,但是题目中并未说明x是整数,所以(1)+(2)也是不充分的。

第三章

几何(Geometry)

几何部分主要考察考生对几何尺寸的理解,要求考生具有构想几何图形以及其与数字间的相 互关系的能力。

- (1) Lines and Angles(直线和角)
- (2) Polygons (convex)(凸多边形)
- (3) Triangles(三角形)
- (4) Quadrilaterals(四边形)
- (5) Circles(圆)
- (6) Rectangular solids and cylinders(长方体和圆柱)
- (7) Coordinate geometry(坐标几何)

第一节 Plane Geometry(平面几何)

一、Lines an Angles (直线和角)

1. Line(直线): In geometry, "line" refers to straight line that extends without end in both directions.

2. Angle(角): 由一点发出的两条射线所夹的平面部分称为角。

3. Vertical Ange(对顶角):两条直线相交(intersect)所形成的角称为对顶角,且对顶角相等。 180°的角被称为平角(straight angle),小于 90°的角被称为锐角(acute angel),大于 90°而小于 180° 的角被称为钝角(obtuse angel),等于 90°的角被称为直角(right angel)。

4. Supplementary Angles(补角): 如果两个角的和是一个平角,这两个角互补(supplementary),其中一个角是另一个角的补角。

5. Complementary Angles(余角):如果两角之和是一个直角,则称这两个角互为余角。两条 相交直线具有以下四个性质:

Opposite angles are equal in degree measure, or congruent (\cong).

If adjacent angles combine to form a straight line, their degree measures total 180°.

If two lines are perpendicular $[\bot]$ to each other, they intersect at right (90°) angles.

The sum of all angles formed by intersecting lines is 360°.

6. Parallel(平行):同一平面上的两条直线若在任何处都不相交,则两直线平行。

7. Transversal(两直线的截线):如果一条直线与另外两直线分别相交,则该直线称为二直线的"截线"。二直线被截后形成八个角,二直线内部的四个角称为"内角"(interior angles),二 直线外部的四个角称为"外角(exterior angles)。内,外角依在截线的同侧或异侧而分别有内错 角(alternative interior angles),外错角(alternate exterior angles)、同旁内角(interior angles on the same side of the transversal)和同旁外角(exterior angles on the same side of the transversal) 之分。另外还有同位角(corresponding angles),即两直线相对于截线同位置的角。

如右图 1 所示: $L_1 // L_2$, L_3 与 L_1 和 L_2 都相交, 形成了 $\angle 1$, $\angle 2$, $\angle 3$, $\angle 4$, $\angle 5$, $\angle 6$, $\angle 7$, $\angle 8$ 八个角。

其中 $\angle 2$ 和 $\angle 6$, $\angle 3$ 和 $\angle 7$, $\angle 1$ 和 $\angle 5$, $\angle 4$ 和 $\angle 8$ 互为同位 角,且相等; $\angle 3$ 和 $\angle 6$, $\angle 4$ 和 $\angle 5$ 互为同旁内角,它们每两个的 和为180°,且互为补角; $\angle 3$ 和 $\angle 5$, $\angle 4$ 和 $\angle 6$ 互为内错角,且相 等; $\angle 1$ 和 $\angle 7$, $\angle 2$ 和 $\angle 8$ 分别互为外错角,且相等; $\angle 2$ 和 $\angle 7$, $\angle 1$ 和 $\angle 8$ 分别互为同旁外角,且互补。

总之: All the odd-numbered angles are congruent (equal in size) to one another. All the even-numbered angles are congruent (equal in size) to one another.

由上图的分析可知,两条直线在一个平面内的位置关系有两种:相交和平行。两条直线互相 垂直只是相交的特例,当两条直线 L_1 和 L_2 互相垂直时,记作 $L_1 \perp L_2$ 。当一条直线和两条平行 线相交时,有如下性质:

① 同位角相等;

② 内错角,外错角相等;

③ 同旁内角,同旁外角互补。

推论:

I. 同位角相等, 两直线平行;

Ⅱ. 内错角,外错角相等,两直线平行;

Ⅲ. 同旁内角, 同旁外角互补, 两直线平行;

Ⅳ. 若一条直线垂直于两条平行直线中的一条,那么它也垂直于两条平行线中的另一条;

V. 若一条直线平行于两条平行直线中的一条, 那么它也平行于两条平行线中的另一条。

二、Angles and Sides of Triangles(三角形的角和边)

1. 三角形的基本性质

① Length of sides: In any triangle, each side is shorter than the sum of the lengths of the other two sides(在三角形中,任一边的长度小于其他两边长度的和).

推论:三角形中两边之差小于第三边。

2 Angle measures: In any triangle, the sum of the three interior angles is 180°.

③ Angles and opposite sides: In any triangle, the relative angle sizes correspond to the relative lengths of the sides opposite those angles. In other words, the smaller the angle, the smaller the side opposite the angle (and vice-versa). Accordingly, if two angles are equal in size, the sides opposite those angles are of equal length (and vice-versa).

推论:

I. 三角形中若最小的两条边的平方和小于第三条边的平方和,则此三角形必为钝角三角形。

II. 三角形中若最小的两条边的平方和大于第三条边的平方和,则此三角形必为锐角三角形。

④ Area of a triangle: The area of any triangle is equal to $\frac{1}{2}$ the product of its base and its height (height is also called the altitude):

118

Area
$$=$$
 $\frac{1}{2} \cdot base \cdot altitude(height) = \frac{1}{2}bh$

在知道三角形的三边之长的情况下,可以用一特殊公式来求解三角形的面积。设三角形的三 边边长分别为 $a, b, c, s = \frac{a+b+c}{2}$,则三角形面积为: $S_{\wedge} = \sqrt{s(s-a)(s-b)(s-c)}$

⑤ 若两个三角形相似,则这两三角形的面积比等于相似比的平方。

⑥ 三角形的一个外角等于其不相邻的两个内角之和。

 \bigcirc Cautions:

I. Do not equate altitude (height) with the length of any particular side. Instead, imagine the base on flat ground, and drop a plumb line straight down from the top peak of the triangle to define height of altitude. The only types of triangles in which the altitude equals the length of one side are right triangles.

II. The ratio among angle sizes does not necessarily correspond precisely to the ratios among the lengths of the sides opposite those angles. For example, if a certain triangle has angle measures of 30° , 60° , and 90° , the ratio of the angles is 1 : 2 : 3. However, this does not mean that the ratio of the lengths of opposite sides is also 1 : 2 : 3.

2. Right Triangles(直角三角形)

The only case where a triangle's altitude (height)equals the length of any of its sides is with a right triangle, in which one angle measures 90° and, of course, each of the other two angles measures less than 90° . The two sides forming the 90° angle are commonly referred to as the triangle's legs (勾或股, 右边图中的 $a \pi b$), whereas the third (and longest side) is referred to as the hypotenuse (弦, 右边图中的 c).

The Pythagorean Theorem expresses the relationship among the sides of any right triangles (a and b are the two legs, and c is the hypotenuse): $a^2 + b^2 = c^2$ With any right triangle, if you know the length of two sides, you can determine the length of the third side with the Theorem.

3. Pythagorean Triplets(毕达哥拉斯三角形)

凡是三边的比例关系满足毕达哥拉斯定律的三角形都被称为毕达哥拉斯三角形。在下表的三 角形中,前两个数代表两个直角边(legs)的相对长度,而第三个最大的数则代表斜边(hypotenuse)的相对长度。建议考生熟记下面表格中的毕达哥拉斯三角形的边的相对长度,为在考试中 熟练地解决直角三角形方面的问题打下坚实的基础。

Ratio	Theorem
$1:1:\sqrt{2}$	$1^2 + 1^2 = (\sqrt{2})^2$
$1 : \sqrt{3} : 2$	$1^2 + (\sqrt{3})^2 = (2)^2$
3 : 4 : 5	$3^2 + 4^2 = (5)^2$
5 : 12 : 13	$5^2 + 12^2 = (13)^2$
8 : 15 : 17	$8^2 + 15^2 = (17)^2$
7 : 24 : 25	$7^2 + 24^2 = (25)^2$

以上几个特殊值其实很好记,如3,4,5,只要将3平方即3²=9,分为两个相邻的自然数 和和9=5+4,则较小的一个为直角边,较大的一个即为斜边,再如5,12,13,5²=12+13。 这里必须是奇数的平方,再有上述所列数都乘以相同因子后所得数也满足勾股定理。如3,4,5 分别乘以2后为6,8,10。

4. Special Right Triangles(特殊的直角三角形)

In two (and only two) of the unique triangles we've identified as Pythagorean triplets, all degree measures are integers:

① The corresponding angles opposite the sides of a $1:1:\sqrt{2}$ triangle are 45° , 45° , and 90° .

② The corresponding angles opposite the sides of a $1 : \sqrt{3} : 2$ triangle are 30° , 60° , and 90° .

注: Two 45° - 45° - 90° triangles pieced together form a square, and two 30° - 60° - 90° triangles together form an equilateral triangle.

例 1: In the figure above, what is the length of AB?

(A) $\frac{3\sqrt{3}}{2}$ (B) $\frac{7}{3}$ (C) $\frac{5\sqrt{2}}{2}$ (D) $2\sqrt{2}$ (E) $\frac{7}{2}$ **ff**: The correct answer is (C). To find length of AB, you need to find AD and BD. The angles of $\triangle ADC$ are 30°, 60°, and 90°. So you know that the ratio among its sides is $1 : \sqrt{3} : 2$. Given that AC=5, $AD=\frac{5}{2}$. Next, you should recognize $\triangle ABD$ as a 45°-45°-90° triangle. The ratio among its sides is $1 : 1 : \sqrt{2}$. You know that $AD=\frac{5}{2}$. Accordingly, $AB=\frac{5\sqrt{2}}{2}$.

5. Isosceles Triangles(等腰三角形)

等腰三角形具有以下性质:

① Two of the sides are congruent (equal in length).

(2) The two angles opposite the two congruent sides are congruent (equal in size, or degree measure).

③ A line that bisects the angle formed by the equal sides bisects the opposite side.

6. Equilateral Triangles(等边三角形)

等边三角形具有以下性质:

① All three sides are congruent (equal in length)

2 All three angles are 60°

(3) The area = $\frac{s^2 \sqrt{3}}{4}$ (s=the length of one side)

④ Any line bisecting one of the 60° angles divides an equilateral triangle into two right triangles with angle measures of 30°, 60°, and 90°; in other words, into two 1 : $\sqrt{3}$: 2 triangles.

三、Quadrilaterals(四边形)

A quadrilateral is a four-sided figure. Here are the specific types of quadrilaterals you should know for the GMAT: (1) square; (2) Rectangle: (3) Parallelogram; (4) Rhombus; (5) trapezoid. Each of these five figures has its own properties (characteristics) that should be second nature to by the time you take the GMAT. The two most important properties are:

I Area (the surface covered by the figure on a plane)

I Perimeter (the total length of all sides)

All quadrilaterals share one important property: The sum of the four interior angles of any quadrilateral is 360°.

1. The Square(正方形)

所有的正方形都具有以下特点:

① 四条边的边长相等;

② 四个角都是 90°, 四个内角的和是 360°;

③ 周长等于边长的 4 倍(Perimeter=4a);

④ 面积等于边长的平方(Area=a²)。

当把正方形的对角连接起来时,正方形又具有以下性质:

① 对角线互相垂直,且长度相等;

图 4

② 对角线平分正方形的每一个内角,即把每个内角都分成了两个 45°的角;

③ 每条对角线长度的平方的一半等于正方形的面积; Area of square = (AC)²/2 = (BD)²/2;
④ 对角线生成的四个三角形,即△ABD,△ACD,△ABC和△BCD全等,每个三角形的面积都是正方形 ABCD的面积的一半。这四个三角形三条边长的比例关系是1:1:√2,三角形的三个角分别是45°,45°和90°;

⑤ 对角线还生成另外四个全等的三角形:即△ABE,△BCE,△CDE 和△ADE。每个三角形的面积都是正方形 ABCD 的面积的四分之一。这四个三角形三条边长的比例关系是 1:1: √2,三角形的三个角分别是 45°,45°和 90°。

2. Rectangles(矩形,又称长方形) 所有的矩形都有以下的性质:

① 对边相等,四个内角都等于 90°;

② 四个内角的和等于 360°;

③ 周长等于长与宽的和的两倍 [Perimeter=2(l+w)];

④ 面积等于长乘以宽(Area = $l \times w$);

⑤ 周长一定时,正方形的面积最大;

⑥ 面积一定时,正方形的周长最小。

矩形的对角线具有以下性质:

① 对角线相等且互相平分(AC=BD, AE=BE=CE=DE);

② 对角线把矩形分成了四个全等的三角形(即 \triangle ABD, \triangle ACD, \triangle ABC 和 \triangle BCD 全等), 且每个三角形的面积是矩形面积的一半;

③ △ABE 和△CDE 全等, △BCE 和△ADE 全等, 且他们都是等腰三角形, 他们的面积 是矩形面积的四分之一。

3. Parallelograms(平行四边形)

所有平行四边形都具有以下性质:

① 对边互相平行且相等;

② 对角相等,四个内角的和等于 360°;

③ 若平行四边形的一个内角等于 90°, 那么它的所 有内角都等于 90°;

④ 平行四边形的周长等于两相邻边长的和的 2 倍

(Perimeter = 2l+2w);

平行四边形的对角线具有以下性质:

① 对角线相互平分(BE=ED, CE=AE);

② 对角线把平行四边形分成四对全等的三角形: $\triangle ABD \cong \triangle CDB$, $\triangle ACD \cong \triangle CAB$, 他 们的面积都等于平行四边形面积的二分之一; $\triangle ABE \cong \triangle CDE$, $\triangle BCE \cong \triangle DAE$, 它们的面积 都等于平行四边形的面积的四分之一。 **B C**

4. The Rhombus(菱形)

所有的菱形都具有以下性质:

① 所有的边都相等,且对边相互平行;

② 对角相等,四个内角的和等于 360°;

③ 周长等于边长的 4 倍(Perimeter=4s);

③ 面积等于底乘高[Area=base(b)×altitude(a)]; 菱形对角线的性质:

① 菱形的面积等于两条对角线乘积的一半(Area of the rhombus= $\frac{AC \times BD}{2}$);

② 对角线互相垂直且平分(AC⊥BD, AE=CE, BE=DE);

③ 对角线平分菱形的四个内角;

④ 对角线把菱形分为两对全等的等腰三角形(即 \triangle ABD \cong \triangle CDB, \triangle ACD \cong \triangle CAB),且 每个等腰三角形的面积都等于菱形的面积的一半;

⑤ 对角线把菱形分为四个全等的直角三角形(即 $\triangle ABE \cong \triangle CDE \cong \triangle BCE \cong \triangle ADE$),他们的面积等于菱形面积的四分之一。 $B _ _ C$

5. Trapezoids(梯形)

所有的梯形都具有以下性质:

(1) Only one pair of opposite sides are parallel (BC//AD);

O The sum of all four interior angles is 360° ;

Ε

b

图 6

③ Perimeter = AB+BC+CD+AD;

④ Area =
$$\frac{BC+AD}{2} \times altitude(a)$$
,即梯形的面积等于上底加下底的和乘以高再除以 2。

四、Polygons(多边形)

多边形的性质:

① 多边形的内角和: Sum of interior angles=(n-2)×180°;

② If all angles of a polygon are congruent (the same size), then all sides are congruent (equal in length);

③ If all sides of a polygon are congruent (the same length), then all angles are congruent (equal in size).

五、Circles(圆)

1. 有关圆的基本概念:

① Radius(半径): the distance from a circle's center to any point on the circle

② Diameter(直径): the greatest distance from one point to another on the circle

③ Chord(弦): a line segment connecting two points on the circle

④ Circumference(周长): the distance around the circle (its "perimeter")

⑤ Arc(弧): a segment of a circle's circumference (an arc can be defined either as a length or as a degree measure)

⑥ Tangent to a Circle (圆的切线): 一条直线与圆只有一个交点称该直线与圆相切, 交点 叫做切点(point of tangency);

⑦ Secant to a Circle(圆的割线): 与圆有两个交点的直线称为圆的割线;

⑧ Central Angle(圆心角):顶点在圆心上并且两条边是圆的弦的角称为 "圆心角";

⑨ Inscribed Angle(圆周角):顶点位于圆周上并且两条边是圆的弦的

角称为"圆周角";

⑩ Sector(扇形):圆弧和它对应的圆心角所围成的一部分平面区域称为"扇形"。

2. 圆的基本性质:

① Every point on a circle's circumference is equidistant from the circle's center;

O The total number of degrees of all angles formed from the circle's center is 360°;

③ Diameter is twice the radius;

- (4) Circumference= $2\pi r$, or πd ;
- (5) Area = πr^2 , or $\frac{\pi d^2}{4}$

⑥ The longest possible chord of a circle passes through its center and is the circle's diameter(如右图中的 AD, AD>AB, AD>AC);

⑦ 圆中同一段弧所对的圆心角是圆周角的两倍(如右图 10 中 / BOC=2 / BAC);

图 10

⑧ 垂直于弦的直径平分这条弦,也平分这条弦所对的圆心角和圆周角。如右图 10 中 AD⊥ BC,则直径 AD 平分∠BOC 和∠BAC);

⑨ 连接圆心与切点的半径垂直于经过该切点的切线(如右图 11 中的 `OC⊥AC 于 C, OB⊥AB 于 B; 在圆中:

图 11

例 2: 某圆的半径为 3 米, 求 40°角所对的 弧的长度。

3. Circles and Triangles(圆与三角形)

One common type of GMAT circle problem is a "hybrid" involving a circle and a triangle. Generally speaking, there are three varieties on the GMAT test:

① 直角三角形的一个顶点在圆心,且这个顶点所对应的角是直角,则这个三角形一定是 等腰直角三角形,这个三角形的三条边长之比为1:1: $\sqrt{2}$,其面积为圆的半径的平方的一半。 如图 12 中所示:在 $\triangle AOB$, $\angle AOB = 90^{\circ}$, $\angle OAB = \angle OBA = 45^{\circ}$, OB = OA = r, $AB = \sqrt{2}r$, $\triangle AOB$ 的面积等于 $\frac{r^{2}}{2}$ 。

② 三角形的一个顶点在圆心,另两个顶点在圆周上,如图 12 中的 \triangle COD 所示。对于这种情况,只要知道 \angle DOC=60°,或知道 DC=r,那么就很容易推出 \triangle COD 是等边三角形,即 OC=OD=DC=r, \angle ODC= \angle OCD= \angle DOC=60°。

③ 三角形内接于圆,即三个顶点都在圆周上时,若这个三角形的一条边长等于圆的直径, 那么这个三角形一定是直角三角形;这个结论反过来也成立,即若这个三角形的一个角等于 90°, 那么这个角所对的边一定等于圆的直径,如图 13 中的△ FGH 所示。

推论:在图 13 的 \triangle FGH 中,若 FH=2r,则当G点在圆周上时, \angle FGH=90°;当G点在圆周外时, \angle FGH 必为锐角;当G点在圆周内时, \angle FGH 必为钝角。

4. Circles and Squares (圆与多边形)

Inscribed Polygon in a Circle(圆的内接多边形):如果一个多边形的所有顶点都在一个圆周上,那么该多边形称为圆的内接多边形;

Inscribed Circle in a Polygon(圆的外切多边形):如果一个多边形的每条边都与圆相切,那么 124

称该多边形为圆的外切多边形,称该圆为这个多边形的内切圆(the polygon is circumscribed about the circle and the circle is inscribed in the polygon)。

Another common type of GMAT circle problem is a hybrid involving a circle and a square:

- ① A circle with an inscribed square(圆的内接正方形,图 14)
- ② A circle with a circumscribed square (圆的外切正方形,图 15)

设圆的半径为 r,则圆的内接正方形的边长为 $\sqrt{2r}$,圆的外接正方形的边长为 2r,它们三者的比例为 1: $\sqrt{2}$: 2,它们三者的面积之比 π : 2:4;图 14 中的阴影部分的面积是 $(\pi-2)r^2$,图 15 中的阴影部分的面积是 $(4-\pi)r^2$,它们两者之比为 $\frac{\pi-2}{4-\pi}$;在两个图中每一小块分离阴影部分的面积都等于整个阴影部分的面积的四分之一,即在图 14 中,每一块月牙的面积 $=\frac{1}{4}(\pi-2)r^2$,在图 15 中每一小块分离的阴影面积 $=\frac{1}{4}(4-\pi)r^2$,它们两者之比也是 $\frac{\pi-2}{4-\pi}$ 。因为 $\pi-2>4-\pi$,所以图 14 中的阴影部分的面积大于图 15 中的阴影部分的面积。

例 3: If a circle whose radius is x has an area of 3, what is the area of a circle whose radius is 5x?

解:考生在做本题时一定要注意技巧。如若 考生一上来就用圆的面积公式(Area= πr^2)去求 x,则显得极不明智,因为本题并没有问x的值 是多少,而只是要你求半径为5x的圆的面积。

根据圆的面积公式($Area = \pi r^2$),略加分析你便可得出如下结论:

两个圆面积的比等于这两个圆半径比的平方 由此很容易得到半径为 5x 的圆的面积等 于半径为 x 的圆的面积的 25 倍,即半径为 5x 的圆的面积=25×3=75。

第二节 Solids Geometry(立体几何)

在 GMAT 考试中,有关立体几何方面的问题主要是求长方体(Rectangular Solids or Boxes),立 方体(Cube),圆柱(Cylinders or Tubes),圆锥(Cone)及球(Ball)的表面积和体积,其中前三种三维物 体考到的可能性最大,下面将对这几种三维物体分别给以简单的介绍。 一、Rectangular Solids (长方体):

A rectangular solid is a three-dimensional(三维) figure formed by six rectangular surfaces, as shown on the right side. Each rectangular surface is a **face**(面). Each solid or dotted line segment is an **edge**(边), and eachpoint at which the edges meet is a **vertex**(顶点). A rectangular solid has six

faces, twelve edges, and eight vertices. Opposite faces are parallel rectangles that have the same dimensions.

The volume (V) of any rectangular solid is the product of its three dimensions: length, width, and height.

> **Volume**=length(长)×width(宽)×height(高)= $l \times w \times h$ Surface Area = 2lh+2lw+2hw=2(lh+lw+hw)

二、Cube(立方体):

A cube is a special type of rectangular solid in which all six faces, or 图 17 surfaces, are square. Because all six faces of a cube are identical in dimension and area, given a length "a" of one of a cube's sides—or edges—its surface area is six times the square of "a", and its volume is the cube of "a":

Volume = a^3

立方体的体积和面积之间有如下关系:

三、Cylinders(圆柱体):

右图是一个正圆柱体(right-circular cylinder, the tube is sliced at 90° angles)。在 GMAT 考 试中斜圆柱体(上下表面与圆柱体的轴线不垂直的圆柱体)是不做要求的。从右图中可以看出正圆 柱体的表面积由三部分组成:

(1) the circular base(下底面)

(2) the circular top(上底面)

(3) the rectangular surface around the cylinder's vertical face (侧面, visualize a rectangular label wrapped around a soup can) The area of the vertical face is the product of the circular base's circumference (i. e., the rectangle's width) and the cylinder's height. Thus, given a radius "r" and height "h" of a cylinder:

Surface Area = $2\pi r^2 + 2\pi rh$

圆柱体的体积等于底面积乘高

 $\mathbf{V} = \pi r^2 h$

Surface Area = $6 a^2$

Volume = $(\sqrt{Area})^3$ Area = $(\sqrt[3]{Volume})^2$

四、Cones(圆锥):

如果圆锥的底面半径是 r, 周长是 c, 侧面母线长是 l, 那么它的侧面积是

$$S_{\text{max}} = \frac{1}{2} cl = \pi rl$$

它的总表面积是:

 $S_{\pm} = S_{mmm} + S_{Kmm} = \pi r l + \pi r^2 = \pi r (l + r)$ 如果一个圆锥的底面半径为 r, 高为 h, 那么它的体积是:

$$V_{\mathbb{G}^{\texttt{H}}} = \frac{1}{3} \pi r^{3}$$

5. Balls(球):

球的表面面积等于它的大圆的面积的4倍:

 $S_{FR} = 4 \pi r^2$

如果球的半径是 r, 那么它的体积是:

$$V_{\rm I} = \frac{4}{3} \pi r^3$$

例 4: A certain cylindrical pail(桶) has a diameter of 14 inches and a height of 10 inches. If there are 231 cubic inches in a gallon, which of the following most closely approximates the number of gallons the pail will hold?

(A) 4.8 (B) 5.1 (C) 6.7 (D) 14.6 (E) 44

图 19

解:本题的正确答案是(C)。因为桶是圆 柱形的,所以根据圆柱体的体积公式可得,桶 的体积为:

 $\mathbf{V} = \pi r^2 = h = \frac{22}{7} \times \left(\frac{14}{2}\right)^2 \times 10 = 1540 \text{(cubic inches)}$ The gallon capacity of the pail = $\frac{1540}{231} \approx 6.7$ **注:** 在近似计算中, 一般都以 $\frac{22}{7}$ 代替 π_{\circ}

第三节 Coordinate Geometry(坐标几何)

On the GMAT test, there always one or two coordinate geometry questions, which involve the rectangular coordinate plane (or xy-plane)(平面直角坐标系) defined by two axes—a horizontal x-axis and a vertical y-axis. A point's x-coordinate is its horizontal position on the plane, and its y-coordinate is its vertical position on the plane. You can denote the coordinates of a point with (x, y), where x is the point's x-coordinate and y is the point's y-coordinate.

一、The Rectangular Coordinate System(平面直角坐标系)

平面直角坐标系表示用有次序的实数对(order pair)确定平面各个点的位置。实数对称为"坐标"。这种坐标系由横轴或称 *x* 轴(*x*-axis)和纵轴或称 *y* 轴(*y*-axis)构成,两轴相互垂直,交点称为原点(origin),一般用 O表示。一个点 A 在坐标平面内的坐标记作 A(*x*, *y*),其中 *x* 表示点 A 的 *x*-坐标, *y* 表示点 A 的 *y*-坐标。

二、Coordinate Signs and the Four Quadrants(坐标平面和四个象限)

坐标平面的中心,即 x 轴和 y 轴的交点叫做原点,原点的坐标是(0,0);任何一个在 x 轴上的点的 y 坐标都是 0,记作(x,0);任何一个在 y 轴上的点的 x 坐标都是 0,记作(0,y);x 和 y 两坐标轴把坐标平面分成四个象限(quadrants),四个象限的相对位置如图 21 所示。一个点的坐标若即不在 x 轴上和 y 轴上,也不是在原点上,那么它一定要落在四个象限中的某一个象限中,四个象限中,x 坐标和 y 坐标的符号如下所示:

Quadrant I(+, +)Quadrant II(-, +)Quadrant II(-, -)Quadrant II(+, -)

三、坐标平面内的点的对称性

坐标系中若某一点的坐标为(a, b),则此点:
关于直线 y=x对称的点的坐标为(b, a);
关于直线 y=-x对称的点的坐标为(-b, -a);
关于 x轴对称的点的坐标为(a, -b);
关于 y轴对称的点的坐标为(-a, b);
注:若两点关于某条直线对称,则这两点的连线被这条直线垂直平分。

例 5 若某一点 A 的坐标为 (*a*, *b*), 另 一点 B 与 A 的连线被 *y* = *x* 这条直线垂直平 分, C 点与 B 点的连线被 *x* 轴垂直平分, 问 C 点的坐标? 解:由A,B两点的连线被 y=x垂直平分 可知A和B两点一定关于 y=x这条直线对称, 因此B点的坐标为(b,a),而C点与B点的连 线又被 x轴垂直平分,也即C点与B点关于 x轴对称,所以C点的坐标为(b, -a)。

四、Distance Formula(两点间的距离公式)

设 A(x1, y1) 和 B(x2, y2)为平面直角坐标系中的两点,则 A 和 B 两点间的距离为:

$$|AB| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

五、中点坐标公式

设 A(x_1 , y_1), B(x_2 , y_2)和 C(x, y)为坐标系中的三点,并且 C(x, y)为线段 AB 的中点,则 $x = \frac{x_1 + x_2}{2}$, $y = \frac{y_1 + y_2}{2}$ 。

六、Slope and Intercepts of a Line(直线的斜率和截距)

1. Slope(斜率):表示一条直线对横坐标轴的倾斜程度。通常用直线和横坐标轴的交角的正 切表示。

2. Intercept(截距): 直线与 y轴交点的纵坐标的绝对值。

七、直线方程(y=ax+b)

函数 y=ax+b在坐标系中表现为直线方程, a称为直线的斜率, |b|为直线在 y 轴上的截距。当 a=0 时, y=b, 这时, 直线 平行于 x轴(当 b也等于零时, 直线就为 x轴); 当 a>0 时, y随 x的增大而增大,函数为增函数; 当 a<0 时, y 随 x 的增大而减 小,函数为减函数。还要注意一个特殊的直线方程,那就是 x=c(c为常数),它平行于 y轴,在 x轴上的截距为|c|。

1. 由已知两点求直线方程(两点式):

如果直线上的两点坐标已知,分别为 $P_1(x_1, y_1)$ 和 $P_2(x_2, y_2)$,则直线的方程为:

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

直线的斜率 $a = \frac{y_2 - y_1}{x_2 - x_1}$, 直线的截距为 $b = \frac{x_2 y_1 - x_1 y_2}{x_2 - x_1}$, 由此直线方程还可表示为:

$$y = \frac{y_2 - y_1}{x_2 - x_1} x + \frac{x_2 y_1 - x_1 y_2}{x_2 - x_1}$$

如果已知直线与横坐标正方向的夹角为 β ,那么 tg β 就是直线的斜率;如果直线通过原点 O(0,0),即直线在 y轴上的截距为零,可由直线上除原点以外的任意一点的坐标和直线的增减 特点求得直线的斜率;平行于 x轴的直线或 x轴的斜率为零;平行于 y轴的直线或 y轴的斜率为 无穷大。

2. 由直线的斜率和直线上某一点的坐标求直线方程(点斜式)

已知直线的斜率为 k, 直线上点 P 的坐标为(x₁, y₁), 则该直线的方程为:

$$y - y_1 = k(x - x_1)$$

例 6: Which of the following points lies on L_1 on the xy-plane pictured below?

(A)
$$\left[\frac{3}{8}, -\frac{3}{2}\right]$$
 (B) $\left[-1, -\frac{2}{3}\right]$
(C) (2, 3) (D) $\left[-\frac{3}{2}, -2\right]$
(E) $\left[-\frac{8}{3}, 2\right]$

解:本题的正确答案为(B)。在解答这类题目时,一般要根据已知的两点的坐标,求出 直线的斜率,然后用点斜式求出直线的方程, 最后把选项中各点的坐标逐一代入验证,从而 找出题目的正确答案。

直线的斜率

$$a = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-2 - 0}{0 - \left(-\frac{3}{2}\right)} = -\frac{4}{3}$$

129

八、抛物线方程($y=ax^2+bx+c$, $a\neq0$)* 函数 $y=ax^2+bx+c$ 在坐标系中表现为抛物线 (parabola)方程,顶点坐标为 $\left[-\frac{b}{2a}, \frac{4ac-b^2}{4a}\right]$ 。当 a>0时,抛物线开口向上,并且 $x\geq -\frac{b}{2a}$ 时,函数 为增函数,当 $x\leqslant -\frac{b}{2a}$ 时,函数为减函数;当 $x=-\frac{b}{2a}$ 时,y取最小值 $\frac{4ac-b^2}{4a}$ 。当a<0时,抛物 线开口向下,并且 $x\geq -\frac{b}{2a}$ 时,函数为减函数,当 $x\leqslant -\frac{b}{2a}$ 时,函数为增函数; $x=-\frac{b}{2a}$ 时,y取最大 值 $\frac{4ac-b^2}{4a}$ 。|c|为抛物线在y轴上的截距,当c=0时,抛物线经过原点;当b和c都为零时,抛物线以原点为顶点。

第四节 重点试题精练及解析

 若△ACD的每条边长都是3,且 AB的长 度等于1,则 BCDF 区域的面积是多少?
 解:本题的正确答案为(B)。由图可知 BCDF 的面积等于△ACD 的面积减去△ABF 的 面积。因为△ACD 是等边三角形,所以 ∠A=60°,△ABF 是直角三角形,所以

* 注:在 GMAT 考试中曾涉及到抛物线(二次曲线)在坐标平面上的表达,虽并未真正地考虑抛物线的知识 点,但为稳妥起见,还是请参加 GMAT 的考生要注意抛物线方程的特点。

1.

If each side of $\triangle ACD$ above has length 3 and if AB has length 1, what is the area of region BCDF?

(A) $\frac{9}{4}$ (B) $\frac{7}{4}\sqrt{3}$ (C) $\frac{9}{4}\sqrt{3}$ (D) $\frac{7}{2}\sqrt{3}$ (E) $6+\sqrt{3}$

2.

Note: Figure not drawn to scale

If A is the center of the circle shown above and AB=BC=CD, what is the value of x? (A) 15 (B) 30 (C) 45 (D) 60 (E) 75

The figure above represents a rectangular parking lot that is 30 meters by 40 meters and an attached semicircular driveway that has an outer radius of 20 meters and an inner radius of 10 meters. If the shaded region is <u>not</u> included, what is the area, in square meters, of the lot and driveway?

(A)	$1,350\pi$	(B) $1,200+400\pi$

(C) $1,200+300\pi$ (D) $1,200+200\pi$

(E) 1,200 $+150\pi$

BF= $\sqrt{3}$ AB= $\sqrt{3}$,因此 \triangle ABF的面积= $\frac{1}{2}\sqrt{3}$; \triangle ACD的面积= $\frac{1}{2}$ AC·AD·sin $60^{\circ} = \frac{9}{4}\sqrt{3}$;综上所述 BCDF的面积为: $\frac{9}{4}\sqrt{3} - \frac{1}{2}\sqrt{3} = \frac{7}{4}\sqrt{3}$ 。

- 如左图所示 A 是圆的圆心,且 AB= BC= CD,问 x 的值是多少?
- 解:本题的正确答案为(B)。由 AB=BC=CD= AD 可得, $\triangle ABC \square \triangle ACD$ 都是等边 三角形,且 ABCD 是菱形,所以 AC 与 BC 互相垂直,因此 x=90-60=30。

- 左边的图形表示一个面积为 30 米×40 米 的长方形停车场,外加一个半圆形的 (semicircular)汽车跑道,其外部半径为 20 米,内部半径为 10 米。若不包括阴影 区域,以平方米(square meter)来计算, 停车场及车道的面积是多少?
- 解:本题的正确答案为(E)。根据题意可得所求的面积为长方形的面积加上半径为20 米的半圆的面积再减去中间阴影部分的面积:

$$30 \times 40 + \frac{1}{2}\pi (20^2 - 10^2) = 1,200 + 150\pi$$

5.

Rectangular region PQRS shown above is partitioned into ten identical smaller rectangular regions, each of which has width x. What is the perimeter of PQRS in terms of x?

(A) 15x (B) 25x (C) 30x (D) 50x

(E) It cannot be determined from the information given.

The outline of a sign for an ice-cream store is made by placing $\frac{3}{4}$ of the circumference of a circle with radius 2 feet on top of an isosceles triangle with height 5 feet, as shown above. What is the perimeter, in feet, of the sign?

- (A) $3\pi + 3\sqrt{3}$
- (B) $3\pi + 6\sqrt{3}$
- (C) $3\pi + 2\sqrt{3}$
- (D) $4\pi + 3\sqrt{3}$
- (E) $4\pi + 6\sqrt{3}$
- 6. A straight pipe 1 yard in length was marked off in fourths and also in thirds. If the pipe was then cut into separate pieces at each of these markings, which of the

- 上面图形中所展示的长方形区域被分成 10 个相同的宽为 x 的小长方形区域。问 PQRS的周长以 x 表示为多少?
- 解:本题的正确答案为(C)。根据图形可知, 大长方形的宽等于小长方形的长为5x, 大长方形长等于小方形的长的两倍,即为 10x,所以 PQRS的周长为:

 $2 \times (5x + 10x) = 30x$

- 一个冰淇淋店的牌子的外形如左图所示, 它由一个半径为2英尺的圆的³/₄放在一个 高为5英尺的等*腰三角形*(isosceles triangle)上组成。问该牌子的周长是多少英尺?
- 解:本题的正确答案为(B)。该题的关键是求 等腰三角形的腰长。如图中所示做辅助 线,根据题意可知,等腰三角形的那一条 边所对的圆的圆心角等于 90°,所以等腰 三角形的底边长为 2√2。再运用勾股定理 可求得等腰三角形的腰长的平方为 5² + (√2)² = 27,所以腰长为 3√3。由上分析 可得该牌子的周长为:

$$\frac{3}{4} \times 4\pi + 2 \times 3\sqrt{3} = 3\pi + 6\sqrt{3}$$

 在长度为一码(yard)的直管子的四等分处 和三等分处做出标记。若沿每一个标记处 将该直管子切开,以一码的分数为单位, 下列哪一个给出了这些管子段的所有不同 following gives all the different lengths of the pieces, in fractions of a yard?

(A)
$$\frac{1}{6}$$
 and $\frac{1}{4}$ only
(B) $\frac{1}{4}$ and $\frac{1}{3}$ only
(C) $\frac{1}{6}$, $\frac{1}{4}$, and $\frac{1}{3}$
(D) $\frac{1}{12}$, $\frac{1}{6}$, and $\frac{1}{4}$
(E) $\frac{1}{12}$, $\frac{1}{6}$, and $\frac{1}{3}$

7. A certain club has 237 local branches, one national office, and one social service office. If each local branch has 2 officers, and each of the two other offices has 4 officers, how many officers does the club have altogether?

(A) 482
(B) 476
(C) 474
(D) 239
(E) 235

In the figure above, two searchlights S_1 and S_2 are located 10,000 feet apart, each covers an area of radius 10,000 feet, and each is located 8,000 feet from the railroad track. To the nearest 1,000 feet, what is the total length x of track spanned by the searchlights?

- (A) 24,000
- (B) 22,000
- (C) 20,000
- (D) 16,000
- (E) 12,000

的长度?

解:本题的正确答案为(D)。如下图所示,该管

由图可知,该管子被切成了六段,其中 两两相等,所以共有 $\frac{1}{4}$, $\frac{1}{12}$, $\frac{1}{6}$ 三种长度。

- 某一俱乐部有 237 个地方部门,一个国家 办公室,一个社会服务办公室。若一个地 方部分有 2 个官员,其他的两个办公室有 4 个官员,问该俱乐部共有多少个官员?
- 解:本题的正确答案为(A)。此题的关键在阅读。读懂题意后,很容易得出其官员数如下:237×2+2×4=482人
- 8. 在左边的图形中,两个探照灯 S₁和 S₂相 距 10,000 英尺,每个能照射到半径为 10,000英尺范围之内的面积,且每个探照 灯距铁轨的距离为 8,000 英尺。四舍五入 到 1000 英尺,探照灯所能照射的铁轨的 总长度 x 是多少?

解:本题的正确答案为(B)。如上图所示由 S₁,
S₂ 向铁轨道做垂线,垂足分别为 B和 C,
根据题意可知 BC= S₁ S₂ = 10,000 英尺,
S₁ B= S₂ C= 8,000 英尺, S₁ A= S₂ D= 10,000。根据勾股定理得:

9. If the number of square units in the area of circle C is twice the number of linear units in the circumference of C, what is the number of square units in the area?

(A) 4	(B) 8	(C) 4π
(D) 8π	(E) 16π	

Note: figure not drawn to scale

The hexagonal face of the block shown in the figure above has sides of equal length and angles of equal measure. If each lateral face is rectangular, what is the area, in square inches, of one lateral face?

(A) 2 $\sqrt{10}$	(B) 12	(C) 20
(D) 12 √3	(E) 24	

Note: Figure not drawn to scale

 $AB = CD = \sqrt{(10000)^2 - (8000)^2} = 6000$ 英 尺 所以 AD 的长度为: $6,000 \times 2 + 10,000 = 22,000$ 英尺

- 9. 若圆 C 的面积的平方单位 (square units)数 是其周长的线性单位数的 2 倍,则该圆面 积的平方单位数是多少?
- 解:本题的正确答案为(E)。设圆 C 的半径为 r,则根据圆的面积及周长的计算公式可 得: $\pi r^2 = 2 \times 2\pi r \Rightarrow r = 4$,所以圆 C 的面积 为 $\pi r^2 = 16\pi$ 。
- 10. 如左图所示,块状物的六边形(hexagonal) 面的边长和内角都分别相等。若每一个侧 面都是长方形,则该块状物的一个侧面的 面积是多少平方英寸?
- 解:本题的正确答案为(E)。由题意可知,该 块状物的六边形面是一个正六边形,每一 个内角都等于120°,再根据三角形的边角 关系可知,图中虚线所连成的三角形是等 边三角形,该六边形的边长等于其长对角 线的一半,即为12 英寸,所以该块状物 的一个侧面的面积是2×12=24 平方英 寸。

- 11. 如左图所示,楼梯的每个台阶的宽为 0.25 米,高为 0.2 米。图形中所出现的所有角 度都是直角。若楼梯的高度为 3.6 米,楼 梯顶端的平台宽 1 米,则 AB 的长度是多 少?
- 解:本题的正确答案为(D)。因为楼梯的总高 度为 3.6,则楼梯的总级数为:

$$\frac{3.6}{0.2} = 18$$

又因为楼梯顶端的平台长度为1米,所以

Each step of a staircase is 0. 25 meter wide and 0. 20 meter high, as shown in the figure above. All angles shown in the figure are right angles. If the height of the staircase is 3. 6 meters and the landing at the top of the staircase is 1 meter wide, how long, in meters, is AB?

(A) 3.0 (B) 4.25 (C) 4.5 (D) 5.25 (E) 5.5

12.

Note: Figure not drawn to scale

In the figure above, DA=DB=DC, what is the value of x?
(A) 10
(B) 20
(C) 30
(D) 40
(E) 50

In the rectangular coordinate system above, the line y=x is the perpendicular bisector of segment AB(not shown), and the *x*-axis is the perpendicular bisector of segment BC(notshown). If the coordinates of point $A \operatorname{are}(2, 3)$, what are the coordinates of point C?

(A)
$$(-3, -2)$$
 (B) $(-3, 2)$
(C) $(2, -3)$ (D) $(3, -2)$
(E) $(2, 2)$

(E) (2, 3)

AB的长度为:

 $17 \times 0.25 + 1 = 5.25 \text{m}$

- **12.** 在左边的图形中, DA=DB=DC, 问 *x* 的值是多少?
- 解:本题的正确答案为(A)。由 DA = DB =DC 可推知 $\triangle BDA$, $\triangle ADC$, $\triangle CDB$ 都 是等腰三角形;由 $\angle BAD = 30^{\circ}$ 可推知 $\angle BDA = 120^{\circ}$,由 $\angle DAC = 50^{\circ}$ 可推知 $\angle ADC = 80^{\circ}$,因此 $\angle BDC = 160^{\circ}$,从而 可以得出 $x = \angle DBC = 10^{\circ}$ 。

- 在左图所示的平面直角坐标系(rectangular coordinate system)中,直线 y=x是线段 AB(未画出)的垂直平分线(perpendicular bisector),且 x轴垂直平分线段 BC(未画 出)。若 A 点的坐标是(2,3),则 C 点的 坐标是多少?
- 解:本题的正确答案为(D)。直线 y=x垂直平 分线段 AB,也即 A 点和 B 点关于直线对称,所以 B 点的纵坐标等于 A 点的横坐 标,B 点的横坐标等于 A 点的纵坐标,即 B 点的坐标为(3,2);同理 C 点和 B 点关 于 x 轴对称,因此 B 点与 C 点的 x 坐标一 样,而纵坐标则互为相反数,所以 C 点的 坐标为(3,-2)

14.

In the figure above, segments PR and QR are each parallel to one of the rectangular coordinate axes. Is the ratio of the length of QR to the length of PR equal to 1? (1) c=3 and d=4

- (2) a = -2 and b = -1
- 15. A certain company has records stored with a record-storage firm in 15-inch by 12-inch by 10-inch boxes. The boxes occupy 1.08 million cubic inches of space. If the company pays \$0.25 per box per month for record storage, what is the total amount that the company pays each month for record storage?
 - (A) **\$**150
 - (B) **\$**300
 - (C) **\$**600
 - (D) **\$**1,200
 - (E) **\$**2,400

The figure above shows a cord around two circular disks. If the radii of the

14. 在左边的图形中, *线段*(segment) PR 和 QR 分别平行于*直角坐标轴*(rectangular coordinate axes)中的一条坐标轴, 线段 QR 与线段 PR 的长度之比等于1吗?

(1) $c=3 \pm d=4$ (2) $a=-2 \pm b=-1$

- 解:本题的正确答案为(C)。由图可知 PR 平行 于 x 轴而 QR 平行于 y 轴,因此 R 点的坐 标为(c, b),所以线段 PR 的长度为 c-a, 线段 QR 的长度为 d-b。由以上分析可知, 根据(1)中的 c=3 且 d=4 无法得到 PR 与 QR 的长度相同,所以(1)不充分;同理(2) 也是不充分的;而(1)+(2)充分,因为在 这个条件下 a, b, c, d 的值均已知,所以可 以充分地回答题目中的提问,即线段 QR 与线段 PR 的长度之比等于1。
- 15. 某一公司的唱片被一唱片保管公司存放在 体积为 15 英尺×12 英尺×10 英尺的盒子 中。这些盒子占用了 108 万立方英寸的空 间。若该公司每个月给一个盒子付 0.25 美元的唱片保管费,则该公司每月应付的 总的唱片保管费是多少?
- 解:本题的正确答案为(A)。首先应算出该公司共有多少盒的唱片被保管:

$$\frac{1,080,000}{15\times12\times10} = 600$$
 \uparrow

所以该公司总共应付的钱为 600×0.25= 150 美元。

- 16. 一根弦如左图所示围绕两个圆盘。若两个圆盘的半径分别为 80 厘米和 60 厘米,则 这根弦的长度是多少厘米?
- 解:本题的正确答案为(B)。从图中可以看出 该弦覆盖了两圆周长的<u>3</u>,弦中离开两圆 的地方分别与两圆相切,切点与圆心的连 线组成的四边形是正方形,边长分别等于 两圆的半径,因此弦与两圆同时相切的中 间两段的切线长为2(80+60)=280;而覆

two disks are 80 centimeters and 60 centimeters, respectively, what is the total length, in centimeters, of the cord?

(A) 210 π	(B) $210\pi + 280$
(C) 280π	(D) 280π+80

- (E) $280\pi + 280$
- 17. A ladder 25 feet long is leaning against a wall that is perpendicular to level ground. The bottom of the ladder is 7 feet from the base of the wall. If the top of the ladder slips down 4 feet, how many feet will the bottom of the ladder slip?
 - (A) 4
 - (B) 5
 - (C) 8
 - (D) 9
 - (E) 15

The shaded region in the figure above represents a rectangular frame with length 18 inches and width 15 inches. The frame encloses a rectangular picture that has the same area as the frame itself. If the length and width of the picture have the same ratio as the length and width of the frame, what is the length of the picture, in inches?

(A) $9\sqrt{2}$ (B) $\frac{3}{2}$ (C) $\frac{9}{\sqrt{2}}$ (D) $15\left(1-\frac{1}{\sqrt{2}}\right)$ (E) $\frac{9}{2}$ 盖在两圆圆周上的弦的长度为 $\frac{3}{4}(2\pi r_1 + 2\pi r_2) = 210\pi$ 。所以此弦的长为 $210\pi + 280$ 。

17. 一个 25 英尺长的梯子斜靠在一堵与地面 垂直的墙上,梯子的底部距墙根有 7 英 尺。若梯子的顶部向下滑 4 英尺,则梯子 的底部将滑多少英尺?

解:本题的正确答案为(C)。根据勾股定理可 得在未滑动之前,梯子的垂直高度为: $\sqrt{25^2 - 7^2} = 24$ 英尺 顶部向下滑4英尺,则梯子的垂直高度为 20 英尺,则梯子距墙根的距离为: $\sqrt{25^2 - 20^2} = 15$ 英尺,所以梯子底部将滑 动 15-7=8英尺。

- 18. 左图所示的阴影区域表示一个长方形的边框,其长为18英寸,宽为15英寸。此边框把一个面积与它相同的长方形照片围了起来。若照片的长与宽的比与边框的长与宽的比相同,则照片的长是多少英寸?
- 解:本题的正确答案为(A)。设照片的长为 a, 宽为 b,则根据题意可得:
 - (1) $2ab=18 \times 15$
 - (2) $\frac{a}{b} = \frac{18}{15}$

由以上方程组可解得该照片的长为 a= 9√2英寸。

In the figure above, if AB // CE, CE = DE, and y=45, then x= (A) 45 (B) 60 (C) 67.5 (D) 112.5 (E) 135

20.

19.

What is the circumference of the circle above? (1) The length of arc XYZ is 18.

(2) r = s

21.

What are the coordinates of point B in the xy-plane above?

(A) (6, 12)	(B) (6, 28)
(C) (8, 20)	(D) (12, 20)
(E) (14, 28)	

- 在左边的图形中,若 AB//CE, CE=DE, 且 y=45,则 x=
- 解:本题的正确答案为(C)。由 y=45, CE= DE 可得 \angle ECD= $\frac{180-45}{2}$ =67.5°; 再根 AB//CE 可得 $x^{\circ}=\angle$ ECD=67.5°。

左边的圆的周长是多少?
 (1)弧 XYZ的长度是 18
 (2) r=s

解:本题的正确答案为(C)。(1)不充分,因为从(1)中只能得到弧 XYZ的长度为18,但却无法得到弧 XZ的长度,所以整个圆的周长也无法得知;(2)不充分,因为从(2)中r=s只能得到三角形是等边三角形,此等边三角形把圆分成的三段弧的长度相等,即弧 YX=弧 XZ=弧 ZY,但仍然无法求出圆的半径;(1)+(2)充分,因为根据 X,Y,Z三点平分圆周,且弧 XYZ的长度为18,可以求出圆的半径为24。

21. 在 xy平面内的点 B 的坐标是多少?

解:本题的正确答案为(B)。由 AB= BC,且
BD⊥AC可推知 D 是线段 AC 的中点,所
以 D 点的坐标为 (-8+20/2,0),即为(6,0)。以因为 BD 与 y 轴平行,所以 B 点的
横坐标也是 6,其纵坐标等于线段 AC 的
长, |AC| = |20-(-8)| = 28,因此 B
点的坐标为(6,28)。
23.

The figure above represents the floor of a square foyer with a circular rug partially covering the floor and extending to the outer edges of the floor as shown. What is the area of the foyer that is not covered by the rug? (1) The area of the foyer is 9 square meters. (2) The area of the rug is 2.25π square meters.

In the figure above, line AC represents a seesaw that is touching level ground at point A. If B is the midpoint of AC, how far above the ground is point C?

(1)
$$x=30$$

(2) Point B is 5 feet above the ground.

If $ab \neq 0$, in what quadrant of the coordinate system above does point(*a*, *b*) lie? (1) (*b*, *a*) lies in quadrant IV.

(2) (a, -b) lies in quadrant III.

- 22. 左边的图形表示一个大厅的正方形地板被一块圆形的地毯部分覆盖,该地毯延伸到地板的外边缘(如图中所示)。问该大厅未被地毯覆盖的部分的面积是多少?
 (1)该大厅的面积是9平方米
 (2)地毯的面积是2.25π平方米
- 解:本题的正确答案为(D)。从图中可以看出 圆形地毯与正方形地板相切,因此知道了 大厅的面积,就可求出内切圆的半径,用 正方形地板的面积减去圆形地毯的面积就 可求出未铺地毯的面积,所以(1)充分; 同理知道了圆形地毯的面积,也可求出正 方形地板的边长和面积,最后也能解出未 铺地毯部分的面积,所以(2)也充分。
- 23. 在左边的图形中,直线 AC 表示一个与地 平面相交于点 A 的跷跷板(seesaw)。若 B 点是 AC 的中点,则 C 点离地面有多远?
 (1) x=30

(2) B 点离地面的距离是 5 英尺

- 解:本题的正确答案为(B)。(1)不充分,因为 只知道角度无法根据三角形的边角关系求 出边长;(2)充分,因为分别从 B 点和 C 点向地面做垂线,所构成的两直角三角形 相似,根据相似三角形的性质可知,C 点 距地面的距离是 B 点距地面的距离的 2 倍,也即 C 点距地面 10 英尺。
- 24. 若 ab≠0,则点(a, b)位于左边坐标系(coordinate system)中的哪一个象限(quadrant)?
 (1)(b, a)位于第四象限
 (2)(a, -b)位于第三象限
- 解:本题的正确答案为(D)。当点(b, a)位于 第四象限时, b大于 0, a小于 0, 所以点 (a, b)位于第二象限,因此(1)充分;当 (a, -b)位于第三象限时,可推知 a<0, -b<0,也即 a<0,b>0,同理可以推知 点(a, b)位于第二象限内。

In the figure above, segments RS and TU represent two positions of the same ladder leaning against the side SV of a wall. The length of TV is how much greater than the length of RV?

- (1) The length of TU is 10 meters.
- (2) The length of RV is 5 meters.

Quadrilateral RSTU shown above is a site plan for a parking lot in which side RU is parallel to side ST and RU is longer than ST. What is the area of the parking lot ? (1) RU=80 meters

- (2) TU=20 $\sqrt{10}$ meters
- **27.** What is the length in meters of a certain rectangular garden?
 - The length of the garden is 6 meters more than twice the width.
 - (2) The length of the garden is 4 times the width.

- 25. 在左边的图形中, 线段 (segment) RS 和 TU 表示一个斜靠在墙 SV 上的梯子的两 个不同位置。问 TV 的长比 RV 的长大多 少?
 - (1) TU的长等于 10 米
 - (2) RV的长等于5米
- 解:本题的正确答案为(D)。根据(1)可得 RS = TU = 10 米,再根据 \angle UTV = 45°, \angle SRV=60°,可求得 TV=5 $\sqrt{2}$, RV=5, 所以 TV-RV=5($\sqrt{2}$ -1),因此(1)充分; 由(2)的 RV=5,可求出 RS=10 米,也 即 TU=10 米,所以 TV= $\frac{10}{\sqrt{2}}$ =5 $\sqrt{2}$, TV - RV=5($\sqrt{2}$ -1),因此(2)也是充分的。
- 26. 如左图所示的*四边形*(quadrilateral)RSTU 是一个计划中的停车场,其中边 RU平行 于边 ST,且 RU比 ST 长。问这个停车场 的面积是多少?
- 解:本题的正确答案为(D)。由 RU=80 米, ST=45 米, SW=60 米,可得停车场的 面积= $\frac{1}{2}$ (ST+RU)SW= $\frac{1}{2}$ (45+80)× 60=37500 平方米,所以(1)充分;过 T 点做 RU 的垂线,设其垂足为 D,则 ST =WD=45 米,TD=SW=60 米,由TU =20 √10可得 DU= √(TU)²-(TD)²= 20 米,所以 RU=RW+WD+DU=15+ 45+20=80 米,从而可以求出四边形 RS-TU的面积为 37500 平方米,所以(2)也充 分。
- 27. 某一个长方形花园的长是多少?
 (1)该花园的长比其宽的2倍多6米
 (2)该花园的长是其宽的4倍
- 解:本题的正确答案为(C)。设该花园的长为 l,宽为w,则由(1)可得:l=2w+6,根 据此式无法求出l的值,所以(1)不充分;

The figure above shows the present position on a radar screen of a sweeping beam that is rotating at a constant rate in a clockwise direction. In which of the four quadrants will the beam lie 30 seconds from now?

(1) In each 30-second period, the beam sweeps through 3.690°

(2) r=40

If the area of the circle above is 64π , what is the value of k?

30. The number of diagonals of a polygon of *n* sides is given by the formula $d = \frac{1}{2}n(n-3)$.

由(2)可得 l=4w,根据此式也无法求出 l的值,所以(2)也不充分;根据(1)+(2) 可求出 l=12, w=3,所以(1)+(2)充分。

28. 左面的图形表示一个在雷达的显示屏上沿顺时针方向以恒定速度旋转的扫描光束。问 30 秒以后该光束位于哪一个象限?
(1)在每一个 30 秒的周期内,该光束扫描 3.690°

(2) r=40

- 解:本题的正确答案为(A)。从图中可以看出 1≈45°,所以若 30 秒钟内光束只旋转了 3.690°,则该光束还应该在第一象限内,所 以(1)充分;(2)中给出了该光束的初始位 置,但未给出光束的旋转速度,所以无法 求其在 30 秒钟后的位置,因而(2)不充分。
- **29.** 若左边图形中圆的面积是 64π, 则 *k* 的值 是多少?
- 解:本题的正确答案为(D)。从图中可以看出 圆的直径为3k,根据圆的面积公式可得:

$$\pi \left(\frac{3k}{2}\right)^2 = 64 \pi$$
$$\Rightarrow k = \frac{16}{3}$$

30. n 边形的对角线(diagonal)由公式 d= n(n-3)来计算。若一个多边形的对角线 的条数是其边数的两倍,则该多边形有多

141

If a polygon has twice as many diagonals as sides, how many sides does it have?

(A) 3 (B) 5 (C) 6 (D) 7 (E) 8

- 31. A warehouse had a square floor with area 10,000 square meters. A rectangular addition was built along one entire side of the warehouse that increased the floor area by one-half as much as the original floor area. How many meters did the addition extend beyond the original building?
 - (A) 10
 - (B) 20
 - (C) 50
 - (D) 200
 - (E) 500

解:本题的正确答案为(D)。根据题意可得: $\frac{1}{2}n(n-3)=2n \Rightarrow n=7$

解:本题的正确答案为(C)。如下图所示, 额外建的房子是图中的阴影部分:

设正方形地板的边长为 a,额外建的房子 伸出原房子 b米,则根据题意可得:

 $a^2 = 10,000 \Rightarrow a = 100 \text{ }$ $ab = 5,000 \Rightarrow b = 50 \text{ }$

32. 在左面图形中, 2x-y的值是多少?

解:本题的正确答案为(B)。根据图中的数据 及直角三角形的性质很容易求出 x= y= 15,从而可以得到 2x-y=x=15。

In the figure above, what is the value of 2x - y? (A) 0 (B) 15 (C) 30 (D) 45 (E) 60

33.

32.

- 33. 左边的图形表示一个将要放在某花店前的 一个牌子的形状。在该牌子中正方形的每 条边上都有一个半圆。若该牌子的厚度为 3 厘米,且正方形的边长为 50 厘米,问该 牌子的体积是多少立方厘米?
- 解:本题的正确答案为(C)。从图中可以看出, 四个同样大小的半圆可构成两个直径为50

The figure above shows the shape of a sign to be placed in front of a flower store. The sign has a semicircle on each side of the square. If the sign is 3 centimeters thick and if each side of the square is 50 centimeters long, what is the volume, in cubic centimeters, of the sign?

(A) $1,250\pi + 2,500$

- (B) 3,750 π
- (C) $3,750 \pi + 7,500$
- (D) $5,000 \pi + 7,500$
- (E) $11,250\pi$

In the figure above, square CDEF has area 4. What is the area of $\triangle ABF$?

(A) 2 √2	(B) 2 √3	(C) 4
(D) 3 √3	(E) 6	

35.

34.

In the figure above, R and Q are points on the x-axis. What is the area of equilateral PQR?

- (1) The coordinates of point P are (6, $2\sqrt{3}$).
- (2) The coordinates of point $Q \operatorname{are}(8, 0)$.

厘米的整圆,所以牌子的体积可以按一个 长方体外加两个圆柱体的体积进行计算: 牌子的体积=2× $\pi \left(\frac{50}{2}\right)^2 \times 3+50^2 \times 3$ =3,750 π +7,500

- 34. 在左边的图形中正方形 CDEF 的面积是4, 问△ABF 的面积是多少?
- 解:本题的正确答案为(E)。由正方形 CDEF 的面积等于 4,可知其边长 CF=2,在 △CFB 中, ∠CBF=30°,所以 BF=2 √3。再由∠FAB=45°可知△FBA 是等腰 直角三角形,所以其面积= $\frac{1}{2}$ BF×AB= $\frac{1}{2}(2\sqrt{3})^2=6$
- **35.** 在左边的图形中, P和Q都是 *x* 轴上的 点。问等边三角形 (equilateral) PQR 的面 积是多少?
 - (1) P点的坐标是(6, 2 √3)
 - (2) Q点的坐标是(8,0)
- 解:本题的正确答案为(A)。因为点 R,Q都 在 x 轴上,所以根据 P 点的纵坐标可得知 等边三角形 PQR 的高为 2,又因为等边三 角形在其高是一定的情况下,其面积是一 定的,所以(1)充分;(2)不充分,因为只 知道 Q 点的坐标,而不知道 R 点的坐标, 所以等边三角形的边长不能确定,从而也 无法求其面积,所以(2)不充分。

In $\triangle ABC$ above, if AB = BC, what is the value of γ ?

(1) x = 50

36.

- (2) z=130
- **37.** What is the perimeter of $\triangle PQR$?
 - The measures of ∠PQR, ∠QRP, and ∠RPQ are x°, 2x°, and 3x°, respectively.
 - (2) The altitude of $\triangle PQR$ from Q to PR is 4.

- **36.** 在左边的△ABC中,若AB=BC,问 y的 值是多少?
- 解:本题的正确答案为(D)。由 AB=BC 可推 知 y°=180°-2∠BAC=180°-2∠BCA。
 由(1)可得∠BAC=50°,由(2)可得 ∠BCA=50°,因此根据(1)和(2)都可求 出 y=80,所以(1)和(2)单独都充分。
- 37. △ PQR 的周长是多少?
 (1) ∠ PQR, ∠QRP 和 ∠ RPQ 的大小分别是 x°, 2x°和 3x°。
 (2) △ PQR 的从 Q 点到 PR 的高是 4。
- 解:本题的正确答案为(C)。根据(1)可以确定
 △PQR是一个直角三角形,其三个内角分別是 30°,60°和 90°,但无法求其面积,所以(1)不充分;只知道一条边上的高也同样求不出一个三角形的面积,所以(2)也不充分;根据(1)+(2)可得△PQR的形状如下;

- 38. 一个金字塔形的 (pyramidal-shaped)盒子 被建造用来保护植物,该盒子由4个侧面 和一个开口的底组成。问该盒子的侧面积
- 38. A pyramidal-shaped box to protect a plant is constructed with 4 lateral faces and an open bottom. What is the lateral area of

術材轉破?

- The base of the pyramid is a polygon with all sides of equal length, and the perimeter of the base is 1 meter.
- (2) The lateral faces are isosceles triangles that have the same size and shape.

是多少?

(1)该盒子的底面是一个各条边都相等的 多边形,且底面的周长为1

(2) 侧面是形状和尺寸都相同的等腰三角形

解:本题的正确答案为(E)。该盒子的形状如 下图所示:

根据(1)只能得出该盒子的底面是一个菱形,所以(1)不充分,根据(2)只知其侧面 由四个全等的等腰三角形组成,但求不出 侧面三角形的面积,因此(2)不充分;只 知道等腰三角形的底边长也无法求出三角 形的面积,所以(1)+(2)也不充分。

- 39. 在左边的平面直角坐标系 (rectangular coordinate system)中, 阴影区域由直线围 成。下列哪一项不是其中的一条边界线的 方程?
- 解:本题的正确答案为(D)。从图中可知,该 阴影区域由4条直线包围,两条是 x 轴和 y 轴,第三条与 y 轴平行,第四条为与 x 轴和 y 轴都相交的直线,根据图中的坐标 以及直线方程的求法,可得这四条直线的 方程如下:
 - (1) x=1
 - (2) x=0
 - (3) y=0
 - (4) $y 0 = \frac{1 0}{0 2} (x 2) \Rightarrow x + 2y = 2$
- **40.** 在左边的长方形 PQRS中, T 是边 PS上的点,若 PS=4,问 PQRS区域的面积是多少?
 - (1) QTR 是等边三角形
 - (2) 线段 PT 和 TS 的长相等
- 解:本题的正确答案为(A)。当△QTR 是等边三

39.

In the rectangular coordinate system above, the shaded region is bounded by straight lines. Which of the following is NOT an equation of one of the boundary lines?

(A)	x=0	(B)	y=0	(C)	x=1
(D)	x - y = 0	(E)	x+2y=2	2	

145

In rectangular region PQRS above, T is a point on side PS. If PS=4, what is the area of region PQRS?

(1) $\triangle QTR$ is equilateral.

(2) Segments *PT* and *TS* have equal length.

- 41. In the rectangular coordinate system, are the points (r, s) and (u, v) equidistant from the origin?
 - (1) r+s=1
 - (2) u=1-r and v=1-s

42. The inside dimensions of a rectangular wooden box are 6 inches by 8 inches by 10 inches. A cylindrical cannister is to be placed inside the box so that it stands upright when the closed box rests on one of its six faces. Of all such cannisters that could be used, what is the radius, in inches, of the one that has maximum volume?

- (B) 4
- (C) 5
- (D) 6

(E) 8

角形时,根据等边三角形的性质可求出其 高= $\frac{\sqrt{3}}{2}$ QR=2 $\sqrt{3}$,也即QP等于2 $\sqrt{3}$,从而 可以求出 PQRS 区域的面积等于2 $\sqrt{3} \times 4=$ 8 $\sqrt{3}$,所以(1)充分;根据线段 PT和 TS相 等,可以得出三角形 QTR 是等腰三角形, 但求不出其 QR 边上的高,因而也求不出 PQRS 区域的面积,所以(2)不充分。

- 41. 在平面直角坐标系 (rectangular coordinate system)中,点(r, s)和(u, v)与原点(origin)的距离相等吗?
 (1) r+s=1
 (2) u=1-r目 v=1-s
- 解:本题的正确答案为(C)。(1)不充分,因为 (1)中未涉及 u, v,所以无法判断两点距 原点的距离;由(2)可得(u+v)=2-(r+ s),同样无法判断 u² + v^2 与 $r^2 + s^2$ 的大 小,所以(2)也不充分;点(r,s)距原点距 离为 $\sqrt{r^2 + s^2}$,点(u,v)距原点距离为 $\sqrt{u^2 + v^2}$,由(2)可得: $u^2 + v^2 = (1-r)^2 +$ $(1-s)^2 = r^2 + s^2 - 2(r+s) + 2$,再由(1)r + s=1 可得 $u^2 + v^2 = r^2 + s^2$,所以(1)+ (2)能充分地回答上面的问题。
- 42. 一长方体 (rectangular) 木盒的内部尺寸为 6 英寸×8 英寸×10 英寸。该盒子中要放 置一个圆柱形的罐子:当关闭的盒子以其 六个面中的任何一个面为底时,该圆柱形 (cylindrical)罐子都能保持直立。在所有 那些可以被放置的这种罐子中,体积最大 的罐子的半径是多少?
- 解:本题的正确答案为(B)。根据题意可知, 该圆柱体罐子一定内切于该长方体盒子, 圆柱体底面的直径与高直接与该长方体盒 子以哪一个面为底有关,长方体有三个不同的底面,所以此题可以分三种情况进行 讨论:

圆柱体的体积为:πr² • h

⁽A) 3

43. If the number of square units in the area of a circle is A and the number of linear units in the circumference is C, what is the radius of the circle?

(1)
$$\frac{A}{C} = \frac{3}{2}$$

- (2) A > C + 3
- 44. In the xy-coordinate system, if(a, b) and (a+3, b+k) are two points on the line defined by the equation x=3y-7, then k
 - (A) 9
 - (B) 3
 - (C) $\frac{7}{3}$
 - Ċ
 - (D) 1
 - (E) $\frac{1}{3}$

45.

In the figure above, P and S are points on the x-axis. What is the area of square PQRS?

- (1) 当圆柱体的底面与长方体的 6 inches
 by 8 inches 面重合时,其体积=90π
- (2) 当圆柱体的底面与长方体的 8 inches
 by 10 inches 面重合时,其体积=96π
- (3) 当圆柱体的底面与长方体的 6 inches
 by 10 inches 面重合时,其体积=72π
 根据以上分析可知,该圆柱体的体积
 最大时其半径为4时。
- 43. 若一个圆的面积的平方单位(square unit)
 数是 A,它的周长的线性单位(linear unit)
 数是 C,问这个圆的半径是多少?
- 解:本题的正确答案为(A)。设这个圆的半径 为 r,则其周长为 $2\pi r=C$,面积为 $\pi r^2 = A$ 所以有: $\frac{A}{C} = \frac{\pi r^2}{2\pi r} \Rightarrow r = \frac{2A}{C}$ 。根据(1)的 $\frac{A}{C}$ = $\frac{3}{2}$ 可求出 r=3,所以(1)充分;根据(2) 显然不能算出 r的值,所以(2)不充分。
- 44. 在一个平面直角坐标系(xy-coordinate system)中,若(a, b)和(a+3, b+k)是直线 x=3y-7上的一点,那么k等于多少?
- 解:本题的正确答案为(D)。由 x=3y-7 可 得: $y=\frac{1}{3}x+\frac{7}{3}$ 又因为(a, b)和(a+3, b+k)是 x=3y-7上的两个点,所以有:

$$\frac{b+k-b}{a+3-a} = \frac{1}{3} \Rightarrow k = 1$$

- **45.** 在左边的图形中, *P*和 S 是 *x* 轴上的点。 问正方形 *PQRS* 的面积是多少?
- 解:本题的正确答案为(B)。根据 P 点的坐标 是(2,0),得不到正方形 PQRS 边长方面 的信息,所以(1)不充分;根据点 R 的坐 标是(6,4)可以得出 RS=4,从而可以求 出正方形 PQRS 的面积等于 16,所以(2) 充分。

- (1) The coordinates of point P are(2, 0)
- (2) The coordinates of point $R \operatorname{are}(6, 4)$
- **46.** What is the volume of a certain rectangular solid?
 - Two adjacent faces of the solid have areas 15 and 24, respectively.
 - (2) Each of two opposite faces of the solid has area 40.

Two pulleys are connected by a belt as shown in the drawing above. If pulley Qmakes 300 evolutions per minute, how many revolutions per minute does pulley P make?

- (1) The length of the belt is 12 π .
- (2) The ratio of the radius of pulley P to the radius of pulley Q is 2 to 1.
- **48.** A grocer is storing small cereal boxes in large cartons that measure 25 inches by 42 inches by 60 inches. If the measurement of each small cereal box is 7 inches by 6

- **46.** 某一长方体 (rectangular solid)的体积是多少?
 - (1)该长方体的两个相邻面的面积分别为 15和24。
 - (2)该长方体的两个相对面的面积是 40。
- **解**:本题的正确答案为(C)。设该长方体的3 条边的长分别为l,w,h,则长方体体积 为 $l \cdot w \cdot h$ 。(1)不充分,因为由(1)只能 得到 $l \cdot w=15$,w · h=24,而无法得到x· y · z 的值;(2)不充分,因为根据(2) 只能得到 $l \cdot h=40$,同样得不到该长方体 的体积的值;(1)+(2)充分,把上面的3 个方程联立,可以求得长方体的体积的大 小:($l \cdot w$)($w \cdot h$)($l \cdot h$)=15×24×40 (lwh)²=3²×5²×8² ⇒lwh=120
- 47. 如左图所示,两个滑轮被一根皮带相连。
 若滑轮Q每分钟旋转300圈,问滑轮P每
 分钟旋转多少圈?
 (1)皮带的长是12π
 - (1) 及甲町区走 14元
 - (2) 滑轮 P 的半径与滑轮 Q 的半径比是 2:1
- 解:本题的正确答案为(B)。因为两个滑轮由 一根皮带相连,所以两个滑轮上任一点的 线速度都是一样的,且滑轮的转速与皮带 的长短无关,因此(1)不充分;根据(2)可 设滑轮 P 的半径为 2r,滑轮 Q 的半径为 r,两个滑轮上任一点的线速度都一样, 也即在相同时间内两个滑轮转过的路程是 一样的,设滑轮 P 每分钟转 x 圈,则根据 题意可得:

300×πr=2πrx⇒x=150 圈/分钟 所以(2)充分。

48. 一杂货商把一些小麦片粥盒子装入尺寸为 25 英寸×42 英寸×60 英寸的大纸箱中。
若每一个小麦片粥盒子的尺寸是7英寸×
6 英寸×5 英寸,那么每一个大纸箱中最

犹然很 擊尼 5 犹然很, 矫犹状 浴液示狠 矫材

maximum number of small cereal boxes that can be placed in each large carton?

- (A) 25
- (B) 210
- (C) 252
- (D) 300
- (E) 420

49.

In the figure above, QRS is a straight line and line TR bisects $\angle PRS$. Is it true that lines TR and PQ are parallel? (1) PQ=PR (2) QR=PR

50.

A portion of a thermometer above is calibrated to show degrees in equal increments. If the temperature indicates a reading at level A, what is the temperature?

(A) 94.069 (B) 94.070 (C) 94.079(D) 94.080 (E) 94.790

- 51. A circular peg is to be placed in a square hole. What is the perimeter of the hole?(1) The radius of the peg is 4 centimeters.
 - (2) Each edge of the hole is tangent to the peg.

多可以放多少个小麦片粥盒子?

解:本题的正确答案为(D)。观察后不难发现 大纸箱的每条边长刚好是小麦片粥盒子的 某一条边长的整数倍,所以大纸箱中可以 放的最多麦片粥盒子数就是两者的体积比 所得的数值:

$$\frac{25 \times 42 \times 60}{7 \times 6 \times 5} = 300$$

49. 在左边的图形中,QRS 是一条直线,且 TR平分(besect)∠PRS,TR 平行于 PQ 吗?

解:本题的正确答案为(B)。根据(1) PQ= PR 无法判断 TR 是否平行于 PQ;根据(2): $QR=PR \Rightarrow \angle PQR = \angle QPR$ $TR 平 分 \angle PRS \Rightarrow \angle TRS = \angle PRT$ $又根据 \angle PRS = \angle TRS + \angle PRT$ $= \angle PQR + \angle QPR \Rightarrow \angle TRS$ $= \angle PQR \Rightarrow TR // PQ$ (同位角相等,两直线平行)

- 50. 左边的一段温度计经校准后所显示温度随 实际温度的增加而做等同的增加。若该温 度计所显示的读数在 A 位置,则此时的温 度是多少?
- 解:本题的正确答案为(C)。从图中可以看出 从 94.07 到 94.08 温度升高了 0.01 度, 且由 10 个等间距的小格表示,所以温度 计的读数每增加一小格,表示温度升高了 0.001度。A 点所处的位置刚好比 94.08 度所处的位置低了 1 小格,所以 A 点所表 示的温度比 94.08度低 0.001 度,也即 A 点所表示的温度为 94.079 度。
- 51. 把一个圆形钉放在一个正方形的洞内。问洞的周长是多少?
 (1)钉的半径是4厘米
 (2)洞的每一条边都与钉相切
- 解:本题的正确答案为(C)。只根据钉的半径 无法求出洞的周长,所以(1)不充分; (2)

149

- 52. A rectangle is defined to be "silver" if and only if the ratio of its length to its width is 2 to 1. If rectangle S is silver, is rectangle R silver?
 - (1) R has the same area as S.
 - (2) The ratio of one side of R to one side of S is 2 to 1.

Rectangle WXYZ is inscribed in a circle with center O as shown above. If the diameter of the circle is equal to 16, then what is the area of the shaded region?

- (1) WZ = OW
- (2) $XW \leq XY$

虽然给出了洞与钉的位置关系,即正方形 洞的边长等于钉的半径的2倍,但在没有 其他条件时,仍无法求出洞的周长,所以 (2)也不充分;根据(1)+(2)可得到正方 形洞的边长为8厘米,从而可求出正方形 洞的周长为32厘米。

- 52. 当且仅当一个长方形的长与宽的比为 2:1
 时,才定义它为"silver"。若长方形 S 是
 "silver",那么长方形 R 是"silver"吗?
 (1) R 与 S 的面积相同
 (2) R 的一条边与 S 的一条边的比为 2:1
- 解:本题的正确答案为(E)。(1)不充分,因为面积相等的长方形有任意多个,而满足长与宽的比为2:1 且面积相等的长方形却仅有一个;(2)不充分,因为不知道另一条边的比率是多少;(1)+(2)也不充分,因为它可以得到两个结果。例如,当 R的两条边长分别为4和2 时,S的两条边即可以为4和2,也可以为8和1。
- 53. 如左图所示,长方形 WXYZ 内接于以 O 为圆心的圆。若该圆的直径为 16,那么阴 影区的面积是多少?
- 解:本题的正确答案为(A)。根据WZ=OW 可得△OWZ是等边三角形,WZ=8,连 接WY,则WY就是圆的直径,也就是说 WY过点O,所以∠YWZ=60°,∠WYZ =30°,所以YZ=5WZ=85,从而可求 出阴影区的面积=圆的面积-长方形的面 积=64 π -645=64(π -5),所以(1)充 分;当XW<XY时,长方形的面积是不 固定的,所以阴影区的面积也是不固定 的,所以(2)不充分。
- 54. 左边的图形展示了一个长方形板的尺寸 (demensions),该长方形板将在如图所示 的点 A, B, C处被切成 4 块相同的板子。 若 x=45,则 AB的长度是多少?

<u>Note</u>: Figure not drawn to scale. The figure above shows the dimensions of a rectangular board that is to be cut into four identical pieces by making cuts at points A, B, and C, as indicated. If x=45, what is the length of AB? (1 foot=12 inches) (A) 5 ft 6 in (B) 5 ft 3 $\sqrt{2}$ in

- (C) 5 ft 3 in (D) 5 ft
- (E) 4 ft 9 in
- **55.** A rectangle with dimensions 75 inches by 100 inches is divided into 20 smaller rectangles. If each new rectangle has equal dimensions, how many inches of lines are needed to divide the original rectangle?
 - One of the dimensions of each of the rectangles is 15 inches.
 - (2) One of the dimensions of each of the rectangles is 25 inches.

注:上面的图形未按比例画出,1英尺=12英寸 解:本题的正确答案为(C)。如图所示做辅助 线,其中 EF⊥AB。根据长方形的性质可

知 EF=AE=6 英寸=0.5 英尺,
$$AC=\frac{2}{2}$$

=10 英尺, BE=BC, 所以有:
 $AC = AE+EB+BC=2BE+AE$
=10 英尺
 $\Rightarrow BE=BC=4.75 英尺$
 $\Rightarrow AB=AE+BE=4.75+0.5$
=5.25 英尺=5 英尺 3 英寸

- 55. 一个面积为 75 英寸×100 英寸的长方形被 分成 20 个小长方形。若新的小长方形的 面积都相等,问需要多少英尺长的线来分 割原始的长方形?
 - (1)每一个小长方形都有一条边的长为15 英寸
 - (2)每一个小长方形都有一条边的长为 25 英寸
- 解:本题的正确答案为(D)。根据分割成的20 个小长方形的面积都相等可得每一个小长 方形的面积为(75×100)÷20=375平方英 寸,所以当小长方形的一条边确定时,另 一条边的长也是确定的。根据(1)可得每 一个小长方形的另一条边长为25英寸, 所以此时一定是大长方形长为75英寸的 边被分成5段,而长为100英寸的边被分 成了4段,如下图所示:

从图中可以看出这些分割线的长度=4× 100+75×3=625 英寸,所以(1)充分;同 理可求得(2)也是充分的。

- 56. If k and w are the dimensions of a rectangle that has area 42, and if k and w are integers such that k > w, what is the total number of possible values of k?
 - (A) Two
 - (B) Three
 - (C) Four
 - (D) Five
 - (E) Six

In the figure above, what is the length of PQ times the length of RS?

- (1) The length of PQ is 5.
- (2) The length of QR times the length of PR is equal to 12.

In the figure above, how many of the points on line segment PQ have coordinates that are both integers? (A) 5 (B) 8 (C) 10

(D) 11 (E) 20

- 56. 若 k 和 w 是一个面积 为 42 的长方形的长 和宽,且 k 和 w 是整数, k>w,那么 k 共 有多少个可能的取值?
- 解:本题的正确答案为(C)。根据 k× w=42, 且 k>w,可得 k和 w 的可能取值如下所示:
 - k=7 w=6
 - $k = 14 \quad w = 3$
 - k=21 w=2
 - $k = 42 \quad w = 1$

所以 k 的可能取值的总数为 4。

- **57.** 在左边的图形中, PQ与RS长度的乘积 是多少?
 - (1) PQ的长等于5

(2) QR 的长与 PR 的长的乘积等于 12

- 解:本题的正确答案为(B)。仅知道 PQ的长, 求不出 PQ与 SR 的乘积,所以(1)不充 分; PQ与 SR 长度的乘积等于△ PQR 面 积的两倍,且等于 QR 与 PR 的乘积,所 以(2)充分。
- 58. 在左边的图形中,线段 PQ上有多少个点的纵横坐标(coordinate)都是整数?
- 解:本题正确答案为(D)。由两点式可得线段 PQ的方程为 $y = -\frac{3}{5}x+30$,其中 0 $\leqslant x$ \leqslant 50。(0 $\leqslant x$ \leqslant 50),根据此式可知,若要 纵坐标是整数, x坐标需应被5整除,在 0 至 50 之间能被5整除的数有11 个。

In the figure above, a circle is inscribed in a square with side b and a square with side a is inscribed in the circle. What is the area of the square with side b?

- (1) a=4
- (2) The radius of the circle is $2\sqrt{2}$.

In \triangle PQR above, is PQ>PR? (1) x = y(2) y = z

- 61. A certain encyclopedia has 20 volumes, each of which is w inches wide, k inches long and t inches thick. If all of the volumes are to be tightly packaged in one rectangular box that is k inches wide and w inches deep inside, could the inside length of the box be less than 35 inches.
 (1) t=1.5
 - (2) w=9 and k=12

- 59. 在左边的图形中,一圆内切(inscribe)于 一边长为b的正方形,一个边长为a的正 方形内接于此圆。问边长为b的正方形的 面积等于多少?
- 解:本题的正确答案为(D)。由 a=4 可求出, 内切圆的直径等于√2 a=4 √2,也即大正 方形的边长 b=4 √2,由此可求出其面积 等于 32,所以(1)充分;由内切圆的半径 等于2 √2 也可得到大正方形的边长 b=4 √2,其面积等于 32,所以(2)也是充分的。

- **60**. 在左边的△PQR中, PQ>PR?
- 解:本题的正确答案为(B)。由(1) x= y 无法 判断 PQ 与 PR 的大小;而由(2) y= z, 可得到 PQ= PR,因此(2)充分地说明了 PQ并不大于 PR。对上面的问题回答是 "No",同样也是充分地回答。
- 61. 某一百科全书有 20 卷,每一卷都是 w英 寸宽, k英寸长和 t英寸厚。若所有这些 书都紧紧地装在一宽为 k英寸,深为 w英 寸的长方形盒子中,那么该盒子的长度能 比 35 英小吗?
- 解:本题的正确答案为(A)。每一本书的宽度 和长度刚好与盒子的深度和宽度相等,所以盒子长度的大小取决于所有这些书的厚度,而与 w和k值的具体大小是多少无关,所以(1)充分,而(2)不充分。根据 (1)可以算出盒子的长度应为 20×1.5=30 英寸,所以(1)充分地回答了该盒子的长 度能比 35 英寸小。

According to the graph above, when x= 3, y is most nearly

(A)
$$-1$$
 (B) $-\frac{1}{2}$ (C) 0
(D) $\frac{1}{2}$ (E) 1

- **63.** A rectangle with dimensions 24 inches by 42 inches is to be divided into squares of equal size. Which of the following could be a length of a side of the squares?
 - (A) 4 inches
 - (B) 6 inches
 - (C) 7 inches
 - (D) 8 inches
 - (E) 10 inches

- **62.** 根据左边的曲线图,当 *x*=3 时, *y* 最近 似于:
- 解:本题的正确答案为(E)。由图形可知 y的 值大于等于 0,当 x=2 时, y=0,因此 该题的正确答案应在(D)和(E)中选取一 个。根据曲线可以得到 x=3 时, y最近 似于 1。本题虽然并未表明图形是按比例 画出的,但在坐标系中的图形或曲线一般 可以认为是符合比例的,因此考生可以根 据曲线的形状及位置进行度量。

- 63. 一个宽为24英寸,长为42英寸的长方形 被分割成大小相同的正方形(square)。下 列哪一个可以是正方形的边长?
- 解:本题的正确答案为(B)。要使分割成的正 方形的大小都相同,则分割成的正方形的 边长一定为长方形的长和宽的公约数,42 与24的公约数有1,2,3,6。

第四章

Data Interpretation(数据解释)

有时在 GMAT 考题中会出现图表题。虽然数据解释题在 GMAT 考试中出现的频率并不高,但 因我国考生在这一方面训练较少,所以本节将比较详尽地对数据解释型的题进行讲解。要想获得 GMAT 高分,数学部分的每一个题都不能放弃。实际上这部分并不难,只不过因为我们见得少而感 到生疏罢了。考生只要能掌握这类题的套路,并稍加训练,这部分的所谓难题就可迎刃而解。

第一节 数据解释的题型介绍

图的基本思想都是利用距离或者面积来表示数值的大小,距离可以是长度,宽度等,而数值 可以是美元,人数,百分比等等。给出的图总是标明图上什么部分表示什么数值,在解涉及图的 问题时必须仔细阅读图上的标记,注解与单位。

一、数据解释题的要求

Data Interpretation questions require you to analyze information presented graphically in statistical charts, graphs, and tables.

二、数据解释中的图表类型:

- 1. Tables(表格)
- 2. Pie charts(圆形图)
- 3. Bar graphs(条带图)
- 4. Line graphs(线型图)
- 5. Cumulative graphs(累积图)

三、图表的含义

1. 表格:分类排列记录事项的文件。如:统计表,收支对照表等;考生应该特别注意表格中 所用的单位,很可能问题中所问的单位与表格中的单位不相同。例如,表格中的量以吨表示,而 问题要求的量用磅表示。

Questions $1 \sim 2$ refer to the following information.

A sample of employees were tested on dataentry skills for one hour, and the number of errors (x) they made and the percent of employees (p) making x errors were recorded as follows. 问题 1~2 参照下面的信息:

一个测试职员数据输入技巧的样本,在一 小时中犯错误的次数(*x*)和犯该错误次数的职 员的百分比(*p*)记录如下。

Number of Errors <i>x</i>	Percent of Employees <i>p</i>
0	2%
1 2	5 % 10 %
3 4	$24 \frac{\%}{10}$
5	20%
6 or more	22%

If those employees who made 6 or more errors were removed from the sample and an employee were selected at random from those remaining, what is the probability that the employee selected made no errors?

(A)
$$\frac{1}{11}$$
 (B) $\frac{1}{22}$ (C) $\frac{1}{39}$
(D) $\frac{1}{50}$ (E) $\frac{1}{78}$

- 2. What was the median number of errors in the sample?
 - (A) 3 (B) 3.5 (C) 4 (D) 4.5
 - (E) It cannot be determined from the information given.

若把犯 6 个或 6 个以上错误的职员移出样本,并且从剩余职员中随机挑出一名职员,问该职员末犯任何错误的概率是多少?

解:本题的正确答案为(C)。由表可知,有6 个或6个以上错误的职员的百分比为 22%,移走这一部分后,剩余78%的职员 中,不犯错误的职员占2%,所以其概率 为:

$$\frac{2\%}{78\%} = \frac{1}{39}$$

样本中犯错误次数的中数是多少?

解:本题的正确答案是(C)。样本中犯错误次数的中数,指样本中中间一个人所犯的错误。考生可以设该样本中共有100人,因为100是偶数,所以样本中犯错误次数的中数为第50个人和第51个人犯错误次数的和除以2。根据表格中的数据有:犯0个错误的人有2个,犯1个错误的人有5个,犯2个错误的人有10个,犯3个错误的人有24个,犯4个错误人的有17个,那么按错误数目排序的第50人和51人均有4个错误,所以中数为4。

2. 圆形图:表示部分与整体的关系,通常以百分比表示图中的每个部分。图中整个圆代表 100%,占总数一定百分比的一个量以相同的比例用一个"扇面(Sector)"表示,扇面越大,所占 的比率越高。

IULY ELECTRICITY USAGE

Question 3 refer to the following graph.

Electricity used: 800 kilowatt-hours

3. The electricity used by the water heater was measured separately and its cost per kilowatt-hour was one-half the cost per kilowatt-hour of the rest of the electricity used. The cost of the electricity used by the water heater was most nearly what fraction of the total cost of all the electricity used?

(A)
$$\frac{1}{11}$$
 (B) $\frac{1}{9}$ (C) $\frac{1}{8}$ (D) $\frac{1}{5}$

(E) It cannot be determined from the information given. 标题: Smythe 家庭七月份的用电分布

热水器用的电是分开计算的,它消耗电的 每千瓦时价格是其他用电设备的一半。热水器 的电费占总电费的比例最接近于下面哪一项? 解:本题的正确答案为(B)。由题千中的饼图

F: 本题的正确答案为(B)。由题一中的研密可知热水器的用电量占总用电量的 20%而其他各项占总用电量的 80%,设热水器的电费为\$x千瓦/小时,则其他各项的电费为\$2x千瓦/小时,由此可知热水器的电费占总电费的比例为:

 $\frac{20\%}{20\% \times x + 80\% \times 2x} = \frac{1}{9}$

3. 线形图: 主要用来描述某一量的连续变化过程, 通常以时间作为变化参数。如果曲线向上 延伸,则表示数量增加;如果曲线向下延伸,则表示数量减少;如果曲线向水平方向延伸,则表 示数量没有变化。有些图中可能不止一条曲线,这些曲线在变化时可能会交叉或重叠,且交叉重 叠部分又往往是 ETS 的考点,因此考生在做题时对曲线中交叉重叠的部分要倍加注意;

Questions 4 ~ 5 refer to the following $4 \sim 5$ 参照下图信息 graph.

FOREIGN TRADE OF COUNTRY X, 1964~1980

(in United States dollars)

Note: Drawn to scale.

- **4.** In 1974 the dollar value of imports was approximately what percent of the dollar value of exports?
 - (A) 4%
 (B) 17%
 (C) 27%
 (D) 79%
 (E) 367%

- 5. If it were discovered that the import dollar amount shown for 1978 was incorrect and should have been \$5.3 billion instead, then the average (arithmetic mean) import dollar amount per year for the 17 years would be how much less?
 - (A) \$100million (B) \$53million
 - (C) \$47million (D) \$17million
 - (E) \$7million

标题:1964~1980 年 X 国的外贸(以美元计) 1974 年美元进口额大约是美元出口额的

百分之几?

解:本题的正确答案为(C)。图中有一实一虚 两条曲线,其中虚线代表出口额随年份的 变化,实线代表进口额随年份的变化。由 两条曲线可以看出,1974年进口额约为 \$3.8 billion,出口额约为 14.2 billion,因 而进口额与出口额的百分比为:3.8/14.2 ≈27%

若发现图中所示的 1978 年的进口额有误, 正确值应为 53 亿美元,那么这 17 年进口额的 (算术)平均值将会减少多少?

解:本题的正确答案为(A)。1978年的进口额的正确值为\$5.3 billion,与图中所示的\$7 billion相比,少了1.7 billion,因此这将使17年的进口额的算术平均值减少量为:

1.7/17=\$0.1billion=\$100million

4.条带图:主要利用条带的长度或高度来进行比较,每个条带可能表示一个量,也可能将其 分割成几段以表示不同的量。这些图的条带有些是水平方向的,有些是垂直方向的。不同的量用 密度不同的斜线或黑色的深浅来区分;

Question 6 refer to the following graph. In these questions all references to gasoline prices and taxes refer to average prices, including tax, and average taxes, in United States dollars, On June 1, 1989.

AVERAGE GASOLINE PRICES AND TAXES JUNE 1, 1989

Note: Drawn to scale

6. If the tax per gallon of gasoline in Canada were doubled and the increase in tax added to the price per gallon of gasoline, what percent of the resulting price per gallon would the tax then be?

(A) 36% (B) 50%

(C) $64\frac{0}{0}$ (D) $75\frac{0}{0}$

若加拿大每加仑汽油的税款加倍,那么税款的增长与每加仑汽油价格相加以后,税款将 会是每加仑汽油的最终价格的百分子多少? 解:本题的正确答案为(C)。由图可知,加拿 大每加仑汽油的含税价格是\$1.7,而税款

为每加仑\$0.8,税款加倍后为每加仑等于 \$1.6,因此每加仑的税款将是每加仑汽油 最终价格的1.6/(1.7+0.8)=0.64

5. 累积图: 以累积带图的形式,将累积条带的高度按比例分成不同的数量,用以比较几个项目。

Questions 7 \sim 8 refer to the following graphs.

⁽E) 90%

COLLEGE R: ENROLLMENT AND CONTRIBUTIONS

 $1976 \sim 1980$

Note: Drawn to scale

7. In the 1978~1979 school year, if 12 percent of the amount of contributions allocated to scholarships and operational expenses was allocated to heating costs, approximately how much was NOT allocated to heating costs?

(A) \$ 2,000	(B) \$ 25,000
(C) \$ 176,000	(D) \$ 205,000
(E) \$ 250,000	

Approximately what was the total amount of contributions to College R from the 1978 ~1979 school year through the 1980~1981 school year, inclusive?

(A) \$ 967,000	(B) \$ 1,000,000
(C) \$ 9,000,000	(D) \$ 9,667,000
(E) \$ 10,000,000	

在 1978~1979 学年,若分配给奖学金和 实验费用的捐资的 12%用于取暖,大约有多 少费用没有分配给取暖?

解:本题的正确答案为(D)。从捐资分配图 (Allocation of All Contributions)中可以 观察到 1978~1979 学年学院 R 所获得的 捐资共约\$233,000,从而没有分配给取暖 的费用约为\$233,000×(1-12%)= \$205,040,与选项(D)的结果相一致。

学院 R 从 1978~1979 学年到 1980~1981 学年(包括二者)获得的捐资总额约为多少?

解:本题的正确答案为(B)。从捐资分配图 (Allocation of Contributions)可以发现学 院三个学年获得的捐资额分别为\$233, 000,\$300,000,\$467,000,因此其总额 为三者之和,等于\$1,000,000。 四、数据解释题的特点

1. 数据解释一般都以 Problem Solving 的形式出现;

2. 较难的题往往需要综合两个或多个图表的信息才能正确解答。

3. 并非所有的图表都是按比例画出的。如果一个图是按比例画出的,那么你就会在图的下面看到"Note: Drawn to scale"。一般说来,图形是否按比例画出,具有以下规律:

Bar graphs will be drawn to scale

O Line charts will be drawn to scale

③ Pie charts will not drawn to scale

④ Visual scale is irrelevant with tables

4. 题目中一般会在图表的上面或下面给出解释图表所必要的额外信息。

5. 大多数的问题只要求近似解。

五、数据解释题的解题策略

数据解释题不同于数值计算题和数量比较题,考生必须具有敏锐的洞察力,透过图表以抓住 解题的关键数据和信息。解答数据解释题时要注意以下几点:

1. 首先对整个图表做一大致了解,但不要深入到图表中。一开始就希望对其全面了解,会 浪费大量的时间,且获得的许多信息又是无用的。一个图形或表格所包括的信息量是很大的,而 题目则一般只有两个,根本不可能涉及所有的内容,因此我们只要做到"按需索取"即可。题目 要求回答什么问题,就到图表中寻找相关的信息。对图表的大致了解不能只集中在"big picture",还要注意"big picture"的周围,即:

① 图表的标题,一般位于上方;

② 横坐标的意义,位于其下方;

③ 纵坐标的意义,位于图表的左边或右边或左右两边都有;

④ 线形图所表示的量或扇形区所表示的量;

⑤ 条式或线式图表中线轴所表示的量的范围;

⑥ 圆式图表的总值;

⑦ 日期,测量单位;

⑧ 阴影部分或其他符号所代表的关键内容

⑨ 脚注,有的用"*"号在标题中引出,有的直接给出,由于它位于图表的底端,有时 字体较小,最易遗漏,应引起考生的重视。

2. 在图表中如有读数困难,可用草纸或铅笔帮助量取;

3. 对较复杂的问题,不要知难而退,可将其分解为几部分,再各个击破。对多个图表同时 出现的问题,经常需将在某一个图表中读取的信息带到另一个图表中方能得到最后的结论。

4. 问题中所使用的单位有时与图表中的不一致,考生务必用正确的单位回答问题;

5. 许多问题只要求近似答案,所以有时可以取近似值以节省时间和脑力,但不要做不合理 的地取舍数据,以造成计算结果错误;

6. 勿搞混小数与百分数, 例如 0.3% 实际上等于 0.003;

8. 勿搞混百分数与原始数,例如把 70%当作 70 处理。

9. 对任何问题的回答必须依据图表所提供的信息,不能凭自己所了解的背景知识进行主观 臆断。

第二节 重点试题精练及解析

1. NUMBER OF FARMS IN THE UNITED STATES,

The average acreage per farm was approximately 140 in 1910 and 220 in 1950. The ratio of the total farmland acreage in 1910 to the total in 1950 was most nearly

(A) $\frac{3}{4}$ (B) $\frac{2}{3}$ (C) $\frac{3}{5}$ (D) $\frac{1}{2}$ (E) $\frac{2}{5}$

2.	January	32, 14, 24, 28
	April	45, 50, 58, 47,
	June	76, 80, 74, 79
	August	84, 95, 100, 89
	November	48, 43, 39, 42

In a set of measurements, the range is defined as the greatest measurement minus the least measurement. According to the table above, during the first four days of which month was the range of temperatures at noon the greatest?

- 标题:1850~1990 年美国农场数量 (in millions)
 在1910 年每个农场的面积大约是140 英
 - 在1910年每个农场的面积大约是140 英 亩,在1950年每个农场的面积大约是220 英亩。1910年农场的总面积与1950年农 场的总面积之比最接近于下面哪一项?
- 解:本题的正确答案为(A)。由图可知 1910 年 农场总数为 6.4 million, 1950 年农场总数 为 5.4 million,因此两者面积之比等于 (6.4×140)/(5.4×220)=0.752。

- 在某一组测量集中,测量的值域被定义为 测量的最大值与测量的最小值的差。根据 左边的表格,哪个月前4天中午的温度变 化范围最大?
- 解:本题的正确答案为(A)。由表可知各月份的温度的变化范围分别为: January: 32-14=18 April: 58-45=13 June: 80-74=6 August: 100-84=16 November: 48-19=9

(A) January (B) April (C) June

(D) August (E) November

Questions 3~4 refer to the following graphs. SALES AND EARNINGS OF COMPANY X 3~4题参照下图:标题:公司 X 的销售与收入

Note: Drawn to scale.

3. If at the end of 1973 Company X sold 30,000 shares of common stock for 35 times Company X's earning for the year, what was the price of a share of common stock at that time?
(A) \$7.00
(B) \$10.00
(C) \$17.50
(D) \$35.00
(E) \$70.00

4. If Company X considered a good year to be any year in which earnings were at least 20 percent of sales, how many of the years shown were good years?

(A) None (B) One (C) Two

(D) Three (E) Four

- 64 6 8 8 8 9 7 7
- 解:本题的正确答案为(A)。考生解答该题的 关键是对"sell...for..."短语的理解,for 后面接的词语多表示买进或卖出的价钱, 如果能建立这种观念,本题就迎刃而解。 根据 Earnings 图,可以找到 X 公司在 1973年的赢利是\$6,000,所以每股普通 股的价钱=<u>35×\$6,000</u> <u>30,000</u>=\$7.00
- 若 X 公司认为只要一年中它的赢利至少占 销售额的 20%,那么该年就是好年头。根 据图中显示,有多少个好年头?
- 解:本题的正确答案为(C)。该题是要找出对 应的年份赢利(Earnings)与销售(Sales)的 比值,经过简单计算,发现只有 1973 和 1974 两个年头满足要求。

Questions 5~6 refer to the following graph. 1977~1978 TEXTBOOK INVENTORY FOR SCHOOLS X AND Y BY YEAR OF PURCHASE 5和6题参照下图:

- 标题: 1977 至 1978 年度学校 X 和学校 Y 教科 书的库存,按购买时间分类。(作为 1977~1978 年度库存的百分比)
- 注: 所有书都在每年的7月1日购买

(as a percent of the $1977 \sim 1978$ inventory)

 $\underline{\text{Note:}}$ All books were purchased new on July 1

of each year.

5. How many of the inventoried textbooks were purchased by the two schools combined during the years 1974, 1975, and 1976?

(A) 495	(B) 940	(C) 1,020
(D) 1,435	(E) 2,800	

6. If School X purchased 300 textbooks in 1971 and all of these textbooks either were counted in the inventory or had been discarded before the inventory, what percent of these textbooks had been discarded?

(A) 10%
(B) 20%
(C) 50%
(D) 80%
(E) 100%

 1974,1975,1976年两个学校购买的库存 教科书的总数是多少?

解:本题的正确答案是(D)。学校 X 在 1974, 1975,1976年购买的图书总数为:

1500×(13%+12%+8%)=495 学校 Y 在 1974, 1975, 1976 年购买的图 书总数为:

2000×(18%+21%+8%)=940 两个学校购买图书的总数=495+940= 1435

- 6. 若学校 X 在 1971 年购买了 300 本教科书, 且所有的这些教科书或者进入库存或者在 进入库存前被废弃,那么被废弃的教科书 占这些书的百分之几?
- 解:本题的正确答案是(C)。1971年学校X库 存图书数目为:

 $1500 \times 10\% = 150$

- 7. Which of the following statements can be inferred from the graph?
 - I. School X has a smaller enrollment than School Y.
 - II. If the age of a book is the number of years since purchase, then the average (arithmetic mean) age of a book in the School Y inventory is less than that of a book in the School X inventory.
 - III. According to the inventory, School X and School Y purchased the same number of textbooks in 1976.
 - (A) None
 - (B) I only
 - (C) [] only
 - (D) I and I
 - (E) \blacksquare and \blacksquare

8.

CANCELATION FEES

Days prior to	Percent of
Departure	Package Price
46 or more	10%
$45 \sim 31$	35 %
30~16	50%
15~5	65 %
4 or fewer	100%

The table above shows the cancellation fee schedule that a travel agency uses to determine the fee charged to a tourist who cancels a trip prior to departure. If a

- 下面哪一句话可以从题目的图表中推断出 来?
 - ジ校X的在册学生比学校Y的在册 学生少;
 - II.若书的年龄为图书购买后的年数,那 么学校Y库存图书的平均年龄比学校 X库存图书的的平均年龄小;
 - Ⅲ.根据库存,学校 X 和学校 Y 在 1976
 年购买的教科书的数目相同。
- 解:本题的正确答案是(C)。由图表中图书的 库存信息无法得到学校 X 与学校 Y 的学 生的多少,所以 I 肯定不对; II 中涉及库 存图书的平均年龄,学校 X 库存图书的平 均年龄为:8×15%+7×10%+6×19% +5×23%+4×13%+3×12%+2× 8%=5.23,学校 Y 库存图书的平均书龄 为:8×12%+7×8%+6×13%+5× 20%+4×18%+3×21%+2×8%= 3.91,所以 II 一定正确,其实由图表也可 观察到学校 X 的年龄比较大的图书所占的 比例均大于学校 Y 的,从而可判断 II 是正 确的;由两学校的库存总量不同,可推知 III 肯定不对。
- 8. 标题:撤消费用

一个旅行机构用上面表格中所示的撤消费 用清单来向在旅行出发前取消旅行的旅客 索取费用。若一个旅客取消了一个由旅行 社代办的且出发时期为9月4日的旅行, 代办费用为1700美元,问该游客哪一天 撤消了此旅行?

- (1) 撤消费用为 595 美元
- (2)若晚撤消此旅行一天,则撤消费用就 可能多 255 美元
- 解:本题的正确答案为(C)。(1)不充分,因 为当撤消费用为 595 美元时,占代办费的

tourist canceled a trip with a package price of \$1,700 and a departure date of September 4, on what day was the trip canceled?

- (1) The cancellation fee was \$595.
- (2) If the trip had been canceled one day later, the cancellation fee would have been \$255 more.

9. NET INCOME FOR CORPORATIONS A and B Corporation A Corporation B

Net Income in 1987	\$ 2.9 million	\$ 0.87 million
Percent De- crease in Net Income from 1986 to 1987	8.8%	13.3%

The net income of Corporation B in 1986 was approximately what percent of the net income of Corporation A in 1987?

(A)	35%	(B)	30%	(C)	25%
(D)	20%	(E)	15%		

10.

Week	Number of Tickets Sold
1	1,000,000
2	1,000,000
3	750,000
4	250,000

The table above shows the number of tickets sold during each of the first 4 weeks after a movie was released. The producer of the movie received 10 percent of the revenue from every ticket sold with a guaranteed minimum of \$200,000 per week for the first 4 weeks. If tickets sold

比例为 $\frac{595}{1700}$ =35%,根据表格中的数据可 知此旅行在 31~45 天前被取消,但无法 得知确切的撤消日期;(2)不充分,因为 根据(2)可知晚一天多付的钱占总代办费 的 $\frac{255}{1700}$ =15%,结合表格中的数据,不难 发现撤消的时间存在两种可能,即出发前 的 31 天,或出发前的 16 天;而根据(1) +(2)可得撤消旅行的日期必为出发前的 第 31 天,即 8 月 4 日。

9. 标题: A 公司和 B 公司的净收入 B 公司 1986 年的净收入是 A 公司 1987 年 净收入的百分之多少?

解:本题的正确答案为(A)。设B公司1986年 的净收入为 x,由题意可得B公司1986年 的净收入为:

x(1-13.3%) = 0.87 million

⇒x=1 million 美元

由表可知 A 公司 1987 年的净收入为 \$2.9million,所以有:

$$\frac{1}{2.9} = 34.4\%$$

- 10. 左边的表格表示在一个电影发行后的前4 周中的每一周的电影票的销售数量。电影 制片人获得每张票销售收入的10%,且在 前4 周的每一周都有一个被保证的 200,000美元的最低收入。若票价为每张4 美元,则电影制片人在前4周得到了多少 钱?
- 解:本题的正确答案为(E)。根据题意可知当 票房收入的10%不足200,000美元时,制 片人要获得200,000美元的最低收入。由 表中数据可知前3周的票房收入的10%均 超过了200,000美元,而第四周售票收入 的10%为:

for \$4 each, how much did the producer receive for the first 4 weeks?

- (A) **\$**800,000
- (B) **\$**900,000
- (C) **\$**1,000,000
- (D) **\$**1,200,000
- (E) **\$**1,300,000
- 11.

Month	Average Price per Dozen
April	\$1.26
May	\$ 1.20
June	\$ 1.08

The table above shows the average (arithmetic mean) price per dozen of the large grade A eggs sold in a certain store during three successive months. If $\frac{2}{3}$ as many dozen were sold in April as in May, and twice as many were sold in June as in April, what was the average price per dozen of the eggs sold over the three-month period?

(A) \$1.08
(B) \$1.10
(C) \$1.14
(D) \$1.16
(E) \$1.18

12. TOTAL EXPENSES FOR THE FIVE DIVI-SIONSOF COMPANY H

The figure above represents a circle graph of Company H's total expenses broken down by the expenses for each of its five divisions. If 250,000×4×10%=100,000 第四周的票房收入不足 200,000 美元,则 制片人第四周的收入应为 200,000 美元, 因此制片人前4周共获得: (1,000,000+1,000,000+750,000)×4× 10%+200,000=1,300,000 美元

- 11. 左面的表格表明了某一商店连续3个月的 大A级鸡蛋每打的平均售价。若4月份销 售的鸡蛋的打数是5月份的2/3,且6月份 销售的鸡蛋的打数是4月份的两倍,则这 3个月期间每打鸡蛋的平均售价是多少?
- 解:本题的正确答案为(D)。设4月份的销售 打数为 x,则5月份销售的打数为²/₃x,6 月份销售的打数为2x,因此这3个月中每 打鸡蛋的平均销售价格为:

$$\frac{1.26x+1.2\times\frac{3}{2}x+1.08\cdot 2x}{x+\frac{3}{2}x+2x} = 1.16$$

12. 标题: H公司 5 个部门的总开支 左边的饼图形表明了 H公司总开支,该 图按其 5 个部门中每一个的开支被分成 5 个部分。若 O是圆的圆心,且公司 H的 总花费为\$5,400,000,则部门 R 的花费 是多少?

解:本题的正确答案为(A)。(1)充分,根据 x=94,其中 x为 R 扇形的圆心角,可以得 到 R 部 的 花 費 = $\frac{94}{360}$ × 5,400,000 = 1,410,000;(2) 不充分,因为根据 S 和 T 的花费是 R 部花费的 2 倍,即 S+T=2R无法说明 R 到底在圆中占多大比例。 O is the center of the circle and if Company H's total expenses are \$5,400,000, what are the expenses for division R?

- (1) x=94
- (2) The total expenses for divisions S and T are twice as much as the expenses for division R.

Questions $13 \sim 14$ refer to the following information.

In a marketing survey for products A, B, and C, 1,000 people were asked which of the products, if any, they use. The three circular regions in the diagram above represent the numbers of people who use products A, B, and C, according to the survey results. Of the people surveyed, a total of 400 use A, a total of 400 use B, and a total of 450 use C.

How many of the people surveyed use exactly one of the products?

(A) 75(B) 100(C) 150(D) 250(E) 325

- 14. What percent of the people surveyed use product A or product B or both, but not product C?
 - (A) 12.5%
 - (B) 17.5%
 - (C) 30%
 - (D) 40%
 - (E) 60%

问题 13~14 参照下面的信息

13. 在一个对于产品 A, B和 C的市场营销的 调查中,有 1000 人被问及他们使用哪一 种产品。上面图形中的 3 个圆形区域表示 使用产品 A, B和 C的人数,根据调查的 结果,在被调查的人中,使用 A 产品的共 有 400 人,使用 B 产品的共 400 人,使用 C 产品的共有 450 人。

调查中有多少人只使用一种产品?

解:本题的正确答案为(E)。由上面的集合图 可知,仅使用一种产品的人就是图中三个 圆形区域不相交的部分所代表的人数,根 据图形可得,仅使用 A 产品的人有:

400 - 125 - 125 - 75 = 75

- 仅使用 B 产品的人有: 400-125-75-100=100 仅使用 C 产品的人有: 450-125-75-100=150 所以仅使用一种产品的人共有: 75+100+150=325
- 14. 被调查的人中有百分之多少的人或者使用 A,或者使用 B,或者两者都使用,但不 使用 C?
- 解:本题的正确答案为(C)。使用 A 但不使用 C 的人有:

400-125-75=200 个

使用 B 但不使用 C 的人有:

400-100-75=225 个

169

所以使用 A 或 B 或两者都使用但不使用 C 的人所占百分比为:<u>300</u>=30%

Questions 15~16 refer to the following graphs. BREAKDOWN OF COST TO CONSUMER FOR THE PRODUCTION OF 6 OUNCES OF FROZEN

ORANGE JUICE

15. Of the following, which is closest to the increase from 1975 to 1980 in the amount received by the processor in producing 6 ounces of frozen orange juice?

(A) \$ 0.03	(B) \$ 0.05	(C) \$ 0.06
(D) \$ 0.08	(E) \$ 0.13	

16. In 1980, approximately what fraction of the cost to the consumer for the production of 6

使用 A 或 B 或 两者都使用的人有:

200+225-125=300 个

- 15. 下列哪一项最接近于加工者从 1975 年到 1980 年生产 6 盎司的冷冻桔子汁所收到的 金额的增加量?
- 解:本题的正确答案为(A)。从题目的饼图中可以看出,消费者在1975年买6盎司桔子汁所花的钱为0.30美元,其中分配到生产商那里的费用占这个金额的31.7%,即为31.7%×0.30;而消费者在1980年买6盎司的桔汁的花费为0.70美元,分配到生产商那里的百分比为18.0%,即为0.70×18.0%,所以从1975年到1980年生产商所得到的金额的增加为:0.70×18.0%-31.7%×0.30=0.0309美元
- **16.** 在 1980 年, 消费者购买 6 盎司的桔汁所花的钱中,农民们得到了大约多大的比例?

ounces of frozen orange juice went to the farmer?

(A) $\frac{3}{11}$ (B) $\frac{1}{3}$ (C) $\frac{4}{9}$ (D) $\frac{5}{9}$ (E) $\frac{3}{5}$

Questions 17 \sim 18 refer to the following graph. AVERAGE COSTS OF OPERATING SUBCOMPACT, COMPACT, AND MID-SIZECARS IN THE UNITED STATES, 1982 \sim 1986 解:本题的正确答案为(C)。从1980年的饼图 中可以看出,农民们能得到消费者所花的 钱的44.4%,约等于4/9。

问题 17~19 参照下列信息 标题: 1982~1986 年美国的微型汽车,小型汽 车和中型汽车的平均运作费用

- 17. In 1982 the approximate average cost of operating a subcompact car for 10,000 miles was(A) \$360(B) \$3,400
 - (C) **\$**4,100 (D) **\$**4,500
 - (E) **\$**4,900
- 18. In 1984 the average cost of operating a subcompact car was approximately what percent less than the average cost of operating a midsized car?
 - (A) $12\frac{0}{0}$ (B) $20\frac{0}{0}$
 - (C) 25% (D) 33%
 - (E) 48%

17. 在 1982 年微型汽车运行 10,000 英里的平均 成本大约是多少?

- 解:本题的正确答案为(B)。条形图的纵坐标是 在当年买的新车运行10,000英里时平均每 英里的运行成本,从图中可以看出微型汽 车(图中的实心黑色条)在1982年每英里的 运行成本是0.34美元,所以其10,000英里 的平均运行成本是3,400美元。
- **18.** 在 1984 年开一辆微型汽车的平均成本大约比 开一辆中型汽车的平均成本少百分之多少?
- 解:本题的正确答案为(C)。从图中可以看出在 1984年开一辆微型汽车每英里的平均成本是 0.36美元,而开一辆中型汽车每英里的平均 成本是 0.48 美元。根据题意可得:
 0.48-0.36 0.48

19. For each of the years shown, the average cost per mile of operating a compact car minus the average cost per mile of operating a subcompact car was between

(A) **\$**0.12 and **\$**0.18

- (B) **\$**0.10 and **\$**0.15
- (C) **\$**0.09 and **\$**0.13
- (D) **\$**0.06 and **\$**0.12
- (F) \$0.05 and \$0.08

20.

	Brand X	Brand Y
Miles per Gallon	40	36
Cost per Gallon	\$ 0.80	\$ 0.75

The table above gives the gasoline costs and consumption rates for a certain car driven at 50 miles per hour, using each of two brands of gasoline. How many miles further can the car be driven at this speed on \$12 worth of brand X gasoline than on \$12 worth of brand Y gasoline? (A) 20 (B) 24 (C) 84 (D) 100 (E) 104

21. DISTRIBUTION OF SALES INCOME FOR STORE S LAST WEEK

According to the graph above, the sale of

- 19. 在上图所示的每一个年份中,开一辆小型 汽车的每英里的平均成本与开一辆微型汽 车的每英里的平均成本的差在下面哪一项 的范围之内?
- 解:本题的正确答案为(D)。从图中可以看出 微型汽车的平均每英里成本从 1982 年到 1986 年呈逐年增加之势,而小型汽车的成 本则在 0.45 美元附近,他们之间的差值 在 1982 年最大,大约为 0.12 美元,在 1984 或 1985 年最小,大约为 0.06 美元。
- 20. 左面的表格给出了某一汽车以 50 英里每 小时的速度行驶时,使用两种不同牌子的 汽油的成本和消耗率。问该汽车用 12 美 元的 X 牌汽油以此速度行驶时将比使用 12 美元的 Y 牌汽油多开多远?
- 解:本题的正确答案为(C)。12美元可买 X 牌 汽油 15 加仑,或买 Y 牌汽油 16 加仑,根 据题意及表格中的数据可得,X 牌汽油比 Y 牌汽油多开的距离为:

40×15-36×16=24 英里

标题:S商店上星期销售收入的分配

21. 根据左图,水果和蔬菜的销售收入占商店S上星期销售总收入的百分之多少?
(1)商店S上星期卖水果和蔬菜的总收入是16,000美元

(2) x=2y

解:本题的正确答案为(D)。由图表可知, 商 店S上星期的销售总收入是 100,000 美 元,根据(1)可得水果和蔬菜占总销售收 入的百分数为 $\frac{16,000}{100,000} \times 100\% = 16\%$,所 以(1)充分;由图表可知 x+y=100-28-40-8=24,再根据(2)的 x=2y可得 x fruits and vegetables in Store S last week accounted for what percent of the total sales income for the week?

- Last week the total income from the sale of fruits and vegetables in Store S was \$16,000.
- (2) x=2y

22.

REVENUE FOR STORE X DURING WEEK 1

Distribution of Total Revenue Amount of Revenue from Dairy Products

During week 1, revenue from eggs provided what percent of the total revenue for store X? (A) $4\frac{9}{0}$

- (B) 5%
- (C) 8%
- (D) 20%
- (E) 25%
- **23.** If the revenue from the sale of apples was equal to the revenue from the sale of miscellaneous items, what PERCENT of the revenue from the sale of fruit and vegetables was accounted for by apples?
 - (A) 60%
 - (B) 15%
 - (C) 12%
 - (D) 6%
 - (E) 3%

=16, 即 x%=16%, 所以(2)也充分。

标题:一星期中商店 X 的收入

- 22. 在一星期中,销售鸡蛋的收入占商店 X 的 总收入的百分比是多少?
- 解:本题的正确答案为(B)。从条形图中可以 看出鸡蛋的收入为200美元,占奶制品销 售收入的百分比为:

 $\frac{200}{200\!+\!500\!+\!100\!+\!200}\!=\!20\%$

再根据饼图可知,奶制品占商店 X 销售总 收入的 25%,所以鸡蛋占销售总收入的百 分比为: 20%×25%=5%。

- 23. 若销售苹果的收入与销售杂货的收入相等,那么水果和蔬菜的销售收入有百分之 多少的比例是来自销售苹果?
- 解:本题的正确答案为(B)。由饼图可知,销 售苹果的收入与杂货的收入相等时,将占 销售总收入的3%,而蔬菜和水果的收入 占销售总收入的20%,所以销售苹果的收 入占蔬菜和水果的收入的百分比为: 3%÷20%=15%。

- **24.** The chart above shows how Jeff spent his earnings for one year. How much did Jeff spend for clothing?
 - He spent \$18 during the year on tennis balls.
 - (2) He spent \$190 during the year on recreation

25.

DAILY TRAIN SCHEDULE

Train	Scheduled Departure	Scheduled Arrival
1 rain	Station S	Station T
Х	7:08(EST)*	8:10(EST)

* Eastern Standard Time

The table above shows the morning schedule for train X. If Juan took train X on Monday morning, did he arrive at station T on schedule?

- Juan arrived at station T on Monday morning 1 hour and 2 minutes after he left station S.
- (2) Juan arrived at his office at 8 : 30 (EST) on Monday morning, which was 20 minutes after he arrived at station T.

- 24. 左面的饼图表明了一年中 Jeff 如何花费他 的收入。问 Jeff 买衣服花了多少钱?
 - (1) 他这一年中在网球上的花费是18 美元
 - (2)他这一年中在娱乐上的花费是 190 美元
- 解:本题的正确答案为(B)。从图中可以看出, Jeff 在衣服上的开支占他这一年总收入的 26%,因此只要能求出总收入是多少,就 可以求出他在衣服上所花钱的多少。(1) 明显不充分,因为它与图中的数据联系不 起来,从而也无法求出 Jeff 在衣服上所花 的钱是多少;(2)充分,因为根据娱乐的 开支是 190 美元,以及它占总开支的 20%,很容易求出他的总支出是 190÷ 20%美元,所以他在衣服上的支出是 190÷20%×26%=247美元。
- 25. 标题:火车日程表

EST:东部标准时间

左表表示火车 X 的上午时刻表。若 Juan 在星期一的上午乘坐火车 X,他能准 时到达车站 T 吗?

- (1) Juan 星期一上午在离开车站 S 一小时 两分钟后到达车站 T。
- (2) Juan 星期一上午于 8:30(东部标准时间),也即他到达车站 T 后的 20 分钟 到达了他的办公室。
- 解:本题的正确答案为(B)。(1)不充分,因 为从(1)中我们只能得知,火车运行的时 间与时刻表中的相一致,但却无从得知火 车是否准时从S站出发,因此也无法推知 Juan 是否准时到达车站T;(2)充分,因 为(2)中指出Juan 在8:30 到达办公室, 是其到达车站T后的20分钟,由此可推 知Juan 到达T的时间为8:10,所以Juan 准时到达了车站T。

Word Problems (文字题)

GMAT 的文字题主要考察 Rate(比率)、Work(工作)、Mixture(混合物)、Interest(利息)、 Discount(折扣)、Profit(利润)、Sets(集合)、Geometry(几何)、Measurement(测量方法)等方面 的内容。

第一节 Weighted Average Problems (加权平均问题)

The formula for determining the average (A) of a series of terms (numbers) is:

$$A = \frac{a + b + c + \cdots}{n}$$

where n equals the number of terms (numbers in the series). When some numbers among the terms to be averaged are given greater "weight" than others, however, you have to make some adjustments to the basic formula to find the average.

例 1: Tom's average monthly salary for the first four months that he worked was \$4000. What must his average monthly salary be for each of the next eight months, so that his average monthly salary for the year is \$4, 800? **ff:** The \$4,000 salary receives a weight of 4, while the unknown salary receives a weight of 8, if x represents the unknown salary, then we can approach this problem in strict algebraic fashion:

$$\frac{4(4000) + 8x}{12} = 4800 \Rightarrow x = 5200$$

Tome's salary for each of the next eight months must be \$5200 for Tom to earn an average of \$4,800 a month during the entire 12 months.

第二节 Currency (Coin and Bill) Problems (货币问题)

Currency problems are really quasi-weighted-average(准加权平均) problems, because each item (bill or coin) in a problem is weighted according to its monetary value. Unlike weighted average problems, however, the "average value" of all the bills or coins is not at issue. In solving currency problems, remember the following:

1. You must formulate algebraic expressions involving both number of items (bills or coins)
and value of items.

2. You should covert the value of all moneys to a common unit (that is, cents or dollars) before formulating an equation. If converting to cents, for example, you must multiply the number of nickels by 5, dimes by 10, and so forth.

例 2: Mike has \$2.05 in dimes and quarters. If he has four fewer dimes than quarters, how much money does he have in dimes? **ff:** Letting x equal the number of dimes, x+4 represents the number of quarters. The total value of the dimes (in cents) is 10x, and the total value of the quarters (in cents) is 25(x+4), or 25x+100. Given that Mike has \$2.05, the following equation emerges:

 $10x + 25x + 100 = 205 \Rightarrow x = 3$

Mike has three dimes, so he has 30 cents in dimes.

第三节 Investment Problems(投资问题)

GMAT investment problems usually involve interest and require more than simply calculating interest earned on a given principal amount at a given rate. They usually call for you to set up and solve an algebraic equation, although sometimes you can solve these problems intuitively.

一、基本概念

① **Discount**(折扣): 商品按原定价格扣除百分之几出售。If a price is discounted by n percent, the price becomes (100 - n) percent of the original price.

② Interest(利息): 借款人支付给贷款人的报酬。利息可分单利(simple interest)和复利(compound interest)两种计算方法。

③ Simple Interest (单利): 计算利息的一种方法。不管期限长短,仅按本金(principal)计算 利息,其所生利息不再加入本金重复计算利息。

④ Compound Interest(复利): 单利的对称。经过一定的期限,将所生利息加入本金再计利息,逐期滚算,俗称"利上滚利"。

⑤ Rate or Percent of Interest(利率):亦称"利息率",指一定时期内利息额同贷出金额的比率,有年利率、月利率和日利率。

⑥ Profit(利润): Gross profit is equal to revenues minus expenses, or selling price minus cost.

例 3: A certain appliance costs a merchant \$40. At what price should the merchant sell the appliance in order to make a gross profit of 30 percent of the cost of the appliance? **解:**设 *x* 为销售价,则由题意可列出方程 *x*-40=40×30%,解这个方程可得 *x*=\$52。 二、基本性质

(1) Selling Price(销售价)=Cost(原价或价值)± Gain 或 Loss(盈或亏)

- (2) **Discount**(折扣)=Cost(原价)×Discount Rate(折扣率) Discount Price(折扣价)=原价一折扣
- (3) Interest(利息)

① Simple Interest (单利)=Principal(本金)×Interest Rate(利率)×Time(时间),式中时间 单位与利率的时间单位应一致。

② Compound Interest(复利): A=P(1+r)", 式中: A 为本利和(principal+interest), P 为本 金(principal), r为利率(rate or percent of interest), n为期数。

例 4: Mr. Richard plans to invest \$20,000 in an account paying 6% interest annually. How much more must he invest at the same time at 3% so that his total annual income during the first year is 4% of his total initial investment?

(A) \$ 32,000	(B) \$ 36,000
(C) \$ 40,000	(D) \$ 47,000
(E) \$ 49,000	

f: Letting x equal the amount invested at 3%, then Mr. Richard's total investment is 20,000+x. The interest on \$20,000 plus the interest on the additional investment equals the total interest from both investments. You can state this algebraically as follows:

$$20,000 \times 0.06 + 0.03 x = (20,000 + x) \times 0.04$$
$$\Rightarrow x = 40,000$$

Richard must invest \$40,000 at 3% for his total annual income to be 4% of her total investment (\$60,000).

第四节 Motion Problems(运动问题)

Motion problems involve the linear movement of persons or objects over time. Fundamental to all GMAT motion problems is the following simple and familiar foumula:

```
Distance(距离)=Rate(速度)×Time(时间)
```

Nearly every GMAT motion problem falls into one of four categories:

(1) Two objects moving in opposite directions(反向运动):反向运动有两种,一是两个物体同 时同地向相反的方向运动,二是两个物体同时但相隔一定距离向相反的方向运动。在上述任何一 种情况下, $d_1 + d_2 = d$,这里 d_1 和 d_2 分别表示第一和第二个物体在一定的时间里移动的距离,d表示两个物体移动的距离之和。

(2) Two objects moving in the same direction (同向运动): 亦称 "追赶运动", 两个物体同时同 地以不同的速度向相同的方向运动,被称为"同向运动"。

(3) One object making a round trip(往返运动):表示从某地出发再回到某地的运动。

(4) Perpendicular or Right-angle(垂直运动): 指两个物体运动的方向相互垂直。For example, where one object moves in a northerly direction while another moves in an easterly direction. However, this type is really just as much a geometry as an algebra problem, because you determine the distance between the two objects by applying the Pythagorean Theorem to determine the length of a triangle's hypotenuse.

例 5: How far can Scott drive into the country if he drives out at 40 mph, returns over the same road at 30 mph, and spends eight hours away from home including a one-hour stop for lunch? **解**: Scott 实际的开车时间是 7 小时,这 7 小时由两部分时间组成,一部分是他从家开车 到乡村所用的时间,另一部分是他从乡村返回 所用的时间。设他开车外出所用的时间为 *x*, 则他返回所用的时间为 7-*x*,把这两个代数 表达式代入运动公式可得:

Formula: Rate×Time=Distance

Going: (40) x = 40 x

Returning: (30)(7-x) = 210 - 30x

因为 Scott 所做的是往返运动,所以来回 距离相等,于是我们可得出下列方程:

 $40 x = 210 - 30 x \Rightarrow x = 3$

即 Scott 在外出时,以 40 mph 的速度运行了 3 小时,也即根据题中条件他可以开车到 120 英里远的郊外。

注: Regardless of which types of motion problem you're dealing with, you should always start with the same task: set up two distinct equations patterned after the simple motion formula $(r \cdot t = d)$.

第五节 流水行船问题

船在江河里航行时,除了本身的前进外,还受到流水的推动或顶流,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。流水行船问题是行程问题的一种,因此行程问题中的三个量(速度、时间和路程)的关系在这里将反复用到。此外流水行船问题还有以下两个基本公式:

顺水速度=船速+水速 逆水速度=船速-水速

这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程;水速是指水在单位 时间里流过的路程。顺水速度和逆水速度分别是指顺水和逆水航行时船在单位时间里所行的路程。

例 6: 某船在静水中的速度是每小时 15 千 米,它从上游甲地开往下游乙地共花去了 8 小 时,水速每小时 3 千米,问从乙地返回甲地需 要多少时间?

分析:要想求从乙地返回甲地需要多少时间,只要分别求出甲、乙两地之间的路程和逆水速度。

解:从甲地到乙地,顺水速度:15+3=18 (千米/小时)

甲乙两地路程:18×8=144(千米)

从乙地到甲地的逆水速度:15-3=12(千 米/小时)

返回时逆行所需的时间:144÷12=12(小 时) 注: 鸟或飞机在风中飞行问题与流水行船问题相类似,在解决这类问题时,只要把流水行船问题中的水速换成风速即可。

第六节 Work Problems(工作问题)

Work problems involve one or more "workers" (people or machines) accomplishing a task or job. 在工作问题中完成某项工作所用的时间与参加该项工作的人数成反比,也就是说,劳动者越多,工作就完成的越快。下面是解决工作问题的通用公式:

$$\frac{A}{x} + \frac{A}{y} = 1$$

In this formula: x and y represent the time needed for each of two workers to complete the job alone; A represents the time it takes for both x and y to complete the job working in the aggregate (together).

So each fraction represents the portion of the job completed by a worker. The sum of the two fractions must be 1, if the job is completed.

在工作问题中一般要出现三个量:工作总量、工作时间(完成工作总量所需的时间)和工作效率(单位时间内完成的工作量)。这三个量之间有下述一些关系:

工作效率×工作时间=工作总量 工作总量÷工作时间=工作效率 工作总量÷工作效率=工作时间

例 7: Worker W produces n units in 5 hours. Workers V and W, working independently but at the same time, produce n units in 2 hours. How long would it take V alone to produce n units? 解:W在5小时里制造了 n个,则W每 小时制造<u>n</u>个,而V和W同时独立地工作时 在2小时内制造了 n个,则V和W每小时制 造<u>n</u>个,因而V每小时制造 $\left[\frac{n}{2} - \frac{n}{5}\right]$ 个。从 而V制造 n个需要的时间为 n÷ $\left[\frac{n}{2} - \frac{n}{5}\right]$ = $3\frac{1}{3}$ (小时)。

第七节 "牛吃草"问题

"牛吃草"问题与工作问题有些相似,在实际解题时可以把此类问题看作是工作问题来解决,"草的总量"可以看作是工作总量,"牛吃草"可看作是工人做工。这类问题区别于工作问题的地方是:在工作问题中总的工作量是一定的,而在"牛吃草"类的问题中,"草"的总量却是在不断变化的,这就是"牛吃草"问题的困难所在。下面将通过举例来讲解一下有关"牛吃草"的问题。

例 8: 牧场上有一片匀速生长的草地,可供 27 头牛吃 6 周,或供 23 头牛吃 9 周,那么 它可供 21 头牛吃几周?

这类问题称为"牛吃草"问题。

提示:做这类问题困难在于草的总量有 变,它每天,每周都在均匀地生长,时间越 长,草的总量就越多,草的总量是由两部分 组成的:(1)某个时间期限前草场上原有的 草量;(2)这个时间期限后草场每天(周)由 于生长而新增的草量;因此,必需设法找出 两个量来。

分析与解答:下面就用这个题目为例对"牛吃草"类的问题进行分析。

从上面的线段可以看出 23 头牛吃 9 周的总草量比 27 头牛吃 6 周的总草量要多。多出部分相 当于 3 周新生长的草量。为了求出一周新生长的草量,就要将问题进行转化。27 头牛 6 周吃草量 相当于 27×6=162 头牛一周吃草量(或一头牛吃 162 周); 23 头牛 9 周吃草量相当于 23×9=207 头牛一周吃草量(或一头牛吃 207 周)。这们一来我们可以认为每周新生长的草量相当于(207-162)÷ (9-6)=15 头牛一周的吃草量。

需要解决的第二个问题是牧场上原有的草量是多少?用 27 头牛 6 周的总吃草量减去 6 周新 生长的草量(即 15×6=90 头牛吃一周的草量)即为牧场原有的草量。所以牧场上原有草量为 27× 6-15×6=72 头牛一周的吃草量(或者为 23×9-15×9=72)。

牧场上的草 21 头牛几周才能吃完呢? 解决这个问题相当于把 21 头牛分成两部分。一部分看 成专吃牧场上原有的草,另一部分看成专吃新生长的草。但是新生长的草只能维持 15 头牛的吃 草量,且始终可保持平衡(前面已分析过每周新生的草恰好够 15 头牛吃一周)。故分出 15 头牛吃 新生长的草,另一部分 21-15=6(头)牛去吃原有的草,所以牧场上的草够吃 72÷6=12(周), 也就是这个牧场上的草够 21 头牛吃 12 周

第 八 节 Mixture Problems (混 和 物 问 题)

In mixture problems, you combine substances with different characteristics, resulting in a particular mixture or proportion. Here are some typical scenarios:

Wet Mixtures involving liquids, gases, or granules, which are measured and mixed by volume or weight, not by number (quantity)

Dry Mixtures involving a number of discreet objects, such as coins, coolies, or marbles, that are measured and mixed by number (quantity) as well as by relative weight, size, value, and so on.

溶液混和问题通常要涉及到浓度和百分比,而固态物质相混和的问题则通常涉及到原始数目 和数量。但是不管是溶液混和还是固态物质混和,解决它们的思路都是一样的,即要牢牢抓住混 和前后的不变量。

例 9: How many quarts of pure alcohol must you add to 15 quarts of solution that is 40% alcohol to strengthen it to a solution that is 50% alcohol?

ff: The original amount of alcohol is 40% of 15 quarts. Letting x equal the number of quarts of alcohol that you must add to achieve a 50% alcohol solution, $0.4 \times 15 + x$ equals the amount of alcohol in the solution after adding more alcohol. You can express this amount as 50% of (15 + x). Thus, you can express the mixture algebraically as follows:

 $0.4 \times 15 + x = 0.5(15 + x)$ $\Rightarrow x = 3$

You must add three quarts of alcohol to a-chieve a 50% alcohol solution.

Caution: Mixture problems often involve units of measurement—such as weight, price, and distance. This feature gives the test-makers a great opportunity to trap you by commingling ounces and pounds, cents and dollars, inches and feet, an so forth. Don't fall for this ploy! Once you set up your equation, always convert terms to the same unit of measurement. You'll be glad you did.

第九节 鸽巢原理(抽屉原则)

若有 m 只鸽子,飞往 n 个巢穴(m>n),则至少有一个巢中的鸽子数大于等于 2 只,这即为 鸽巢原理。(若用抽屉原则表达即为:有 m 个球,放入 n 个抽屉中(m>n),则至少有一个抽屉球 的数目大于或等于 2)。这一简单的原理在 GMAT 考试中经常遇到。

例 10: 有 0~9 这十个数字分别写在 10 张 纸片上,随机从这十个小纸片中抓,问至少抓 几个小纸片才能保证所抓小纸片上必有两个小 纸片上所写数字相加等于 10? **解:**在 0~9 这十个数字中可以相加等于 10 的仅有(1,9),(2,8),(3,7),(4,6),除 此之外还有 0 和 5 这两个数,因此就组成了 6 个巢穴分别是(前四个):(1,9),(2,8),(3, 7),(4,6),0,5,则原题转化为取几个纸片 能保证有两个属于前 4 个"巢穴"中的任一个 巢穴。根据鸽巢原理所取纸片至少应比"巢穴" 多,因而至少应取 6+1=7 个纸片。

第十节 Age Problems(年龄问题)

Age problems ask you to compare ages of two or more people at different points in time. In solving age problems, you might have to represent a person's age at the present time, several years from now, or several years ago. Any age problem allows you to set up an equation to relate the ages of two or more people, as in the following examples:

(1) If A is 5 years younger than B at the present time, you can express the relationship between A's age and B's age as A=B-5 (or A+5=B)

(2) Ten years ago, if X was twice as old as Y, you can express the relationship between their ages as 2(Y-10) = X-10, where X and Y are the present ages of X and Y.

例 11: Fred, Geri, and Holly were each born on May 15, but in different years. Fred is twice as old as Geri was 4 years ago, and Holly is five years older than Geri will be one year from now. If the total age of Fred, Geri, and Holly is 78, how old is Fred? 解:设 Fred, Geri 和 Holly 现在的年龄分 別为 F, G和 H, 根据题意 Fred 现在的年龄是 Geri 四年前年龄的 2 倍可得: F=2 (G-4); 又根据题意 Holly 现在的年龄比 Geri 一年后 的年龄大 5 岁可得: H=G+6; 再由三人目前 的年龄之和等于 78 可得: F+G+H=78 \Rightarrow 2 (G-4)+G+(G+6)=78 \Rightarrow G=20 \Rightarrow F=2 (G-4)=32

第十一节 Problems Involving Overlapping Sets(集合问题)

Overlapping set problems involve distinct sets that share some number of members. GMAT overlapping problems come in one of two varieties:

- 1. Single overlap (easier)
- 2. Double overlap (tougher)

例 12: The inventory at a certain men's clothing store includes 480 neckties (领带), each of which is either 100% silk or 100% polyester(多元酯), 40% of the ties are striped, and 130 of the ties are silk, 52 of the silk ties are striped. How many of the ties are polyester but are not striped? 解: This double overlap problem involves four distinct sets: striped silk ties, striped polyester ties, non-striped silk ties, and nonstriped polyesters ties. Set up a table representing the four sets.

Neckties	Silk	Polyester	Total
Striped	52	140	480×40%=192
Non-striped	78	? =210	288
Total	130	350	480

Given that 130 ties are silk (see the left column), 350 ties must be polyester (see the right column). Also, given that 40% of the 480 ties (192 ties) are striped (see the top row), 140 of the 0olyester ties (192 - 52) must be striped. Accordingly, 350 - 140, or 210, of the ties are polyester and non-striped.

在上面的表格中,根据题意可直接得出的 已知条件都已用黑体字标出,根据这些已知数 据很容易求出不带条纹的领带是 210 条。

注: GMAT 考试中出现的代数文字题的类型很多,限于篇幅,本书不能穷举。但是"万变不离其宗",其他类型的文字题大都可转化为上面讲解的几种方法给予解决。

第十二节 重点试题精练及解析

On a purchase of \$120, a store offered a payment plan consisting of a \$20 down payment and 12 monthly payments of \$10 each. What percent of the purchase price, to the nearest tenth of a percent, did the customer pay in interest by using this plan?

(A) 16.7%
(B) 30%
(C) 75.8%
(D) 106.7%
(E) 107.5%

An airline passenger is planning a trip that involves three connecting flights that leave from Airports A, B, and C, respectively. The first flight leaves Airport A every hour, beginning at 8:00 a.m., and arrives at Airport B 2 1/2 hours later. The second flight leaves Airport B every 20 minutes, beginning at 8: 00 a.m., and arrives at Airport C 1 1/6 hours later. The third flight leaves Airport C every hour, beginning at 8: 45 a.m. What is the least total 182

- 一商店为一件价值为 120 美元的物品提供 的付款方案包括 20 美元的 首期付款 (down payment)和每月 10 美元分 12 个月 还清的分期付款。使用该方案的消费者, 所付的利息是该物品购买价格的百分之多 少(精确到百分数的十分位)?
- 解:本题的正确答案为(A)。消费者总共付的钱 为 20+12×10=140 美元,所以其所付的 利息为 140-120=20 美元,因此利息占商 品价格的百分数为:20÷120=16.7%。
- 一个航空公司在安排一次涉及到分别从机场A,B,C起飞的3个连续航班的旅行。
 第一个航班在上午8点从机场A起飞,每小时一班,并于2.5个小时后到达机场B。第二个航班在上午8点起从机场B起飞,每20分钟一班,并于1小时10分钟后到达C。第三个航班在上午8点45分从机场C起飞,每小时一班。若所有的航班都遵从它们的日程,则这些乘客在航班之间所花的最少时间是多少?
- 解:本题的正确答案为(B)。要使在航班之间 花的时间最少,则这些乘客应尽可能地赶

amount of time the passenger must spend between flights if all flights keep to their schedules?

(A) 25 min
(B) 1 hr 5 min
(C) 1 hr 15 min
(D) 2 hr 20 min
(E) 3 hr 40 min

3. How many liters of pure alcohol must be added to a 100-liter solution that is 20 percent alcohol in order to produce a solution that is 25 percent alcohol?

(A)
$$\frac{7}{2}$$
 (B) 5 (C) $\frac{20}{3}$
(D) 8 (E) $\frac{39}{4}$

4. A certain car increased its average speed by 5 miles per hour in each successive 5-minute interval after the first interval. If in the first 5-minute interval its average speed was 20 miles per hour, how many miles did the car travel in the third 5-minute interval?

(A) 1.0 (B) 1.5 (C) 2.0 (D) 2.5 (E) 3.0

5. Mr. Jones drove from Town A to Town B in x hours. On the return trip over the same route, his average speed was twice as fast. Which of the following expresses the total number of driving hours for the round trip?

(A)
$$\frac{2}{3}x$$
 (B) $\frac{3}{2}x$ (C) $\frac{5}{3}x$
(D)2x (E) 3x

上早一点的航班。设乘客上午 8 点从机场 A 出发,则于 10 点 30 分到达机场 B,此 时乘客只能乘 10 点 40 从 B 飞往 C 的航 班,并于 11 点 50 后才能到达机场 C,此 时机场 C 的 11 点 45 分的航班刚开走 5 分 钟,所以不得不等下一班,即 55 分钟以 后的哪一班。综上所述,乘客在航班之间 所花的时间应为 10+55=65 分钟。

- 100 升浓度为 20%的酒精溶液中得加入多 少升的纯酒精,才能使溶液中酒精的浓度 达到 25%?
- 解:本题的正确答案为(C)。设需加入 x 升的 纯酒精,根据题意可得:

 $100 \times 20\% + x = (100 + x) \times 25\% \Rightarrow x = \frac{20}{3} \text{H}.$

- 4. 一辆小汽车在第一个5分钟后每隔5分钟 平均速度均增加5英里/小时。若在第一 个5分钟内其平均速度为每小时20英里, 那么在第三个5分钟内,小汽车行驶了多 少英里?
- 解:本题的正确答案为(D)。根据题意可得第 三个5分钟内小汽车的平均速度为:

20+5+5=30 英里/小时 所以第三个5分钟行驶的里程为:

$$30 \times 5 \times \frac{1}{60} = 2.5 英里$$

- 5. Jones 先生开车从 A 镇到 B 镇用了 x小时。他沿原路返回的速度是他去时速度的2 倍。下面哪一项能表示他往返两地所用的总时间?
- 解:本题的正确答案为(B)。根据路程等于速度乘以时间,在路程不变,速度加倍时, 其所用的时间肯定减半,因此 Jones 先生 返回所用的时间是去时的一半,所以他总 共用的时间为:

$$x + \frac{1}{2}x = \frac{3}{2}x \checkmark \mathbb{H}_{\circ}$$

6. A certain basketball team that has played ²/₃ of its games has a record of 17 wins and 3 losses. What is the greatest number of the remaining games that the team can lose and still win at least ³/₄ of all of its games? (A) 7 (B) 6 (C) 5

(D) 4 (E) 3

- 7. If a certain grove consists of 36 pecan trees, what was the yield per tree last year?
 - The yield per tree for the 18 trees in the northern half of the grove was 60 kilograms last year.
 - (2) The yield per tree for the 18 trees in the eastern half of the grove was 55 kilograms last year.
- 8. A total of 40 brand X television sets and 80 brand Y television sets were purchased for a motel chain. If the price of each brand Y set was twice the price of each brand X set, what percent of the total bill was the price of a brand Y set?
 - (A) 0.25%
 - (B) 0.5%
 - (C) 0.625%
 - (D) 0.833%
 - (E) 1.0%

- 某一篮球队已打完了它的²/₃的比赛,且取 得17胜3负的成绩。若该队要至少赢得 其参赛总数的³/₄,问在剩下比赛中该队最 多还可以输掉多少场?
- 解:本题的正确答案为(D)。根据题意可得, 该篮球队总共要参加的比赛次数为:

$$(17+3) \div \frac{2}{3} = 30$$

该队至少赢 $\frac{3}{4}$ 的比赛则至少要赢 $30 \times \frac{3}{4} = 22.5$ 场,所以该队最多可以输 30 - 23 - 3 = 4场比赛。

- 若某一林子中有 36 棵山核桃树,去年每 棵树的平均产量是多少?
 - (1)去年林子北半部的18棵树的平均产量是60公斤。
 - (2) 去年林子东半部的18棵树的平均产 量是55公斤。
- 解:本题的正确答案为(E)。(1)不充分,因为 从(1)中只能得到去年北半部的18 棵树的 平均产量是60公斤,而无法得到整个林 子的平均产量;同理(2)和(1)+(2)也不 充分。
- 8. 一汽车旅馆连锁店一共购买了 40 个 X 牌 的电视和 80 个 Y 牌的电视。若 Y 牌电视 的价格是 X 牌电视的价格的 2 倍,则一个 Y 牌电视的价格占总帐单的百分比是多 少?
- 解:本题的正确答案为(E)。考生一定要注意的是题目最后问的是一个Y牌电视的价格,设X牌电视的单台价格为x,则Y牌电视的单台价格为2x,所有这些电视的总价格为40x+80×2x=200x,根据题意可得单台Y牌电视占总帐单的百分比为:

 $\frac{2x}{200x} \times 100\% = 1.0\%$

9. Solution Y is 30 percent liquid X and 70 percent water. If 2 kilograms of water e-vaporate from 8 kilograms of solution Y and 2 kilograms of solution Y are added to the remaining 6 kilograms of liquid, what percent of this new solution is liquid X?

(A) 30 [%]	(B) $33 \frac{1}{3} \%$	(C) $37 \frac{1}{2} \%$
(D) 40%	(E) 50%	

- 10. In a mayoral election, Candidate X received $\frac{1}{3}$ more votes than Candidate Y, and Candidate Y received $\frac{1}{4}$ fewer votes than Candidate Z. If Candidate Z received 24,000 votes, how many votes did Candidate X receive?
 - (A) 18,000
 (B) 22,000
 (C) 24,000
 (D) 26,000
 (E) 32,000
- 11. An instructor scored a student's test of 50 questions by subtracting 2 times the number of incorrect answers from the number of correct answers. If the student answered all of the questions and received a score of 38, how many questions did that student answer correctly?

(A) 19 (B) 38 (C) 41 (D) 44 (E) 46

12. A toy store regularly sells all stock at a discount of 20 percent to 40 percent. If an additional 25 percent were deducted from the discount price during a special sale,

- 9. Y 溶液由 30%的液态物质 X 和 70%的水 组成。若有 2 公斤的水从 8 公斤的 Y 溶液 中蒸发出去,且 2 公斤的 Y 溶液被加入到 剩余的 6 公斤溶体中,问新溶液中液态物 质 X 所占的百分比是多少?
- 解:本题的正确答案为(C)。稍加分析就可发现此题等同于问 10 公斤的 Y 溶液蒸发掉两公斤的水后的溶液中的液态物质 X 在整个溶液中所占的百分比,根据题意可得其所占的百分比为:

 $\frac{10 \times 30\%}{10 - 2} = \frac{3}{8} = 37.5\%$

- 10. 在一市长选举中,候选人 X 获得的选票比
 候选人 Y 多¹/₃,且候选人 Y 获得的选票
 比候选人 Z 少¹/₄。若候选人 Z 获得 24,000
 张选票,则候选人 X 获得多少张选票?
- 解:本题的正确答案为(C)。设候选人 Z 获得 x 张选票,则候选人 Y 获得 $\frac{3}{4}x$ 张选票, 候选人 X 获得 $\frac{3}{4}x + \frac{1}{3} \times \frac{3}{4}x = x$,所以候 选人 X 获得的选票与候选人 Z 获得的选票 一样多,都为 24,000 张。
- 11. 一教员给一个学生的 50 个问题的测验打 分,答对的题数减去答错的题数的两倍即 为该学生的成绩。若该学生回答了所有的 问题且得了 38 分,问该学生答对了多少 道题目?
- 解:本题的正确答案为(E)。设该学生答对的 题数为 x,根据题意可得:

$$x - 2(50 - x) = 38$$

 $x = 46$

12. 一玩具店定期以 20%到 40%的折扣(discount)销售它的所有存货。若在一特殊销售中商品的售价从打折的价格中再减去 25%,则一件在无任何打折之前售价为 16

what would be the lowest possible price of a toy costing \$16 before any discount? (A) \$5,60 (B) \$7,20 (C) \$8,80

- (D) **\$** 9. 60 (E) **\$** 15. 20
- 13. Each person on a committee with 40 members voted for exactly one of 3 candidates,F, G, or H. Did Candidate F receive the most votes from the 40 votes cast?
 - (1) Candidate F received 11 of the votes
 - (2) Candidate H received 14 of the votes.

14. During the four years that Mrs. Lopez owned her car, she found that her total car expenses were \$18,000. Fuel and maintenance costs accounted for $\frac{1}{2}$ of the total and depreciation accounted for $\frac{3}{5}$ of the remainder. The cost of insurance was 3 times the cost of financing, and together these two costs accounted for $\frac{1}{5}$ of the total. If the only other expenses were taxes and license fees, then the cost of financing was how much more or less than the cost of taxes and license fees? (A) **\$1,**500 more (B) **\$1,**200 more (C) **\$**100 less (D) **\$**300 less

美元的玩具的最低可能价格是多少?

- 解:本题的正确答案为(B)。做对此题的关键 在于对最后一句话的理解。要使价格最低,就要使玩具的打折的幅度最大,根据 题意可得,该玩具的最低可能价格为: 16×(1-40%)(1-25%)=7.2美元
- 13. 拥有 40 名成员的委员会中的每个人都对 3 名候选人 F、G 或 H 中的一个投票支持。 在这 40 张选票中,支持候选人 F 的选票 最多吗?

(1) 候选人 F 接受了 11 张选票。

(2) 候选人 H 接受了 14 张选票。

- 解:本题的正确答案为(A)。(1)充分,因为 F只接受了11张选票,小于总的40张选 票的1/3,由此可知在G和H这两个人中, 至少有一个人得到的选票的数量将大于 11,这也就是回答了题目中的问题:支持 候选人F的选票不是最多的;(2)不充 分,因为仅根据候选人H得到的选票的 多少很难得到候选人F所得的选票的确切 信息。
- 14. Lopez 太太发现她的汽车在四年中的总花费是 18,000 美元。燃料和保养费占总花费的¹/₃,贬值占其余的³/₅。保险费是分期付款费的 3 倍,这两项加起来占总花费的¹/₅。若仅有的其他费用是税款和执照费,那么分期付款费比税款和执照费多多少或少多少?
- 解:本题的正确答案为(D)。设分期付款费为 x,则保险费为3x,根据题意可得:

 $x+3x=\frac{1}{5}\times 18,000 \Rightarrow x=900$ 美元

税款和执照费用

$$= 18,000 \left[1 - \left(\frac{1}{3} + \left(1 - \frac{1}{3} \right) \times \frac{3}{5} + \frac{1}{5} \right) \right]$$

(E) \$1,500 less

15. A boy walking along a road at 3 kilometers per hour is overtaken by a truck traveling at 40 kilometers per hour. If the truck breaks down 1 kilometer beyond where it passes the boy, how many minutes after the breakdown does the boy reach the truck?

(A)
$$21\frac{1}{2}$$
 (B) 20
(C) $18\frac{34}{37}$ (D) $18\frac{26}{43}$
(E) $18\frac{1}{2}$

16. A circular rim 28 inches in diameter rotates the same number of inches per second as a circular rim 35 inches in diameter. If the smaller rim makes x revolutions per second, how many revolutions per minute does the larger rim make in terms of x?

(A)
$$\frac{48\pi}{x}$$
 (B) $75x$ (C) $48x$
(D) $24x$ (E) $\frac{x}{75}$

- 17. Mary invested \$8,400 for 6 months in a certificate of deposit paying 9 $\frac{1}{4}$ percent simple annual interest. How much more interest would Mary have received if the interest rate on this certificate had been 9
 - $\frac{3}{4}$ percent simple annual interest?
 - (A) **\$**2.10 (B) **\$**21.00
 - (C) **\$**42.00 (D) **\$**210.00
 - (E) **\$**420.00

=18,000×1/15=1,200 所以分期付款费比税款和执照费少1,200 -900=300 美元。

- 15. 一个男孩以 3 公里/小时的速度沿一条道路行走时被一辆以 40 公里/小时的速度行驶的货车超过。若此货车在超过该男孩一公里远的地方出了故障,问出了故障多少分钟后该男孩到达货车现场?
- 解:本题的正确答案为(E)。设该男孩行走1公 里所用的时间为 $60 \times \frac{1}{3}$ 分钟,而货车行驶 1公里所用的时间为 $60 \times \frac{1}{40}$ 分钟,所以该 男孩在故障发生后到达现场所用的时间为: $60 \times \left(\frac{1}{3} - \frac{1}{40}\right) = 18\frac{1}{2}$
- 16. 一直径为 28 英寸的圆轮每秒钟转过的英 寸数与一直径为 35 英寸的圆轮的相同。 若小圆 轮每秒转 x 圈,则大轮每分钟转 多少圈(以 x来表示)?
- 解:本题的正确答案为(C)。考生在做这类题时一定要倍加小心,题目中给出的每秒转多少圈,而最后问的是每分钟转多少圈,因此考生一定要注意单位的换算。根据题意可得大轮每分钟转这的圈数为:

$$60 \times \frac{28}{35} x = 48 x$$

- 17. Mary 把 8400 美元投入了一个年单利息 (simple annual interest)为 9.25%的定期 存款,存期为 6 个月。若这个定期存折的 年单利息为 9.75%,则 Mary 可以多获得 多少利息?
- 解:本题的正确答案为(B)。根据年单利息的 计算公式可得:

8400×
$$\frac{1}{2}$$
×(9.75%-9.25%)
=4200×0.5%=21 美元

187

18. One night 18 percent of the female officers on a police force were on duty. If 180 officers were on duty that night and half of these were female officers, how many female officers were on the police force?

(A) 90 (B) 180 (C) 270

(D) 500 (E) 1,000

19. Of the science books in a certain supply room, 50 are on botany, 65 are on zoology, 90 are on physics, 50 are on geology, and 110 are on chemistry. If science books are removed randomly from the supply room, how many must be removed to ensure that 80 of the books removed are on the same science?

(A) 81	(B) 159	(C) 166
(D) 285	(E) 324	

- 20. The markup on a television set is 20 percent of the cost. The markup is what percent of the selling price? (markup=selling price-cost)
 - (A) 8% (B) 10% (C) $12 \frac{1}{2} \%$ (D) 15% (E) $16 \frac{2}{3} \%$
- 21. A certain shade of gray paint is obtained by mixing 3 parts of white paint with 5 parts of black paint. If 2 gallons of

- 18. 一天夜里,某一警察局有18%的女警察 值班。若那天夜里有180人值夜班,且 有一半是女警察,则该警察局有多少女 警察?
- 解:本题的正确答案为(D)。那天夜里值夜班 的女警察有 $180 \times \frac{1}{2} = 90$ 人,而这 90 个 人占整个女警察人数的 18%,所以该警察 局的女警察人数为: $90 \div 18\% = 500$ 人
- 19. 在某一库房的所有科学书中,有 50 本是 植物学方面的书,65 本是动物学方面的 书,90 本是物理学方面的书,50 本是地 质学方面的书,110 本是化学方面的书。 若科学书被随机取出该房间,需要取多少 本才能保证移出的书中有 80 本是同一学 科的?
- 解:本题的正确答案为(E)。超过 80 本书的有 物理学 90 本,化学 110 本。因此要想使 移出的书中有 80 本是同一学科的,就必 须在其它三学科的书都被移出的同时,物 理和化学方面的书的总数要达到 159,此 时移出的书的数目为:

50+50+65+159=324 此时要么是物理方面的书,要么是化

学方面的书是80本。

- 20. 一电视的价格增加额是其成本价的 20%。 问该价格增加额是销售价格的百分之多 少?
- 解:本题的正确答案为(E)。设该电视的成本 为 a,则价格增加额为 0.2a,该电视的销 售价格为 1.2a,根据题意可得价格增加额 是销售价格的;

 $\frac{0.2a}{1.2a} \times 100\% = 16\frac{2}{3}\%$

21. 某种灰色颜料由 3 份的白色颜料和 5 份的 黑色颜料混合得到。若需要 2 加仑的混合 颜料,且每种颜料只能以 1 加仑一筒或 the mixture is needed and the individual colors can be purchased only in one-gallon or halfgallon cans, what is the least amount of paint, in gallons, that must be purchased in order to measure out the portions needed for the mixture?

- (A) 2 (B) $2\frac{1}{2}$ (C) 3 (D) $3\frac{1}{2}$ (E) 4
- 22. Virginia, Adrienne, and Dennis have taught history for a combined total of 96 years. If Virginia has taught for 9 more years than Adrienne and for 9 fewer years than Dennis, for how many years has Dennis taught?

(A) 23 (B) 32 (C) 35 (D) 41 (E) 44

23. A merchant paid \$ 300 for a shipment of x identical calculators. The merchant used 2 of the calculators as demonstrators and sold each of the others for \$ 5 more than the average (arithmetic mean) cost of the x calculators. If the total revenue from the sale of the calculators was \$ 120 more than the cost of the shipment, how many calculators were in the shipment?

(A)	24	(B) 25	(C)	26
(D)	28	(E) 30		

24. In 1985 a company sold a brand of shoes to retailers for a fixed price per pair. In 1986 the number of pairs of the shoes that the company sold to retailers decreased by 0.5加仑一筒的形式购买,则至少需要购 买多少加仑的颜料来配出符合比例要求的 混合颜料?

- 解:本题的正确答案为(B)。根据题意可设需 要白色颜料 3x 加仑,需要黑色颜料为 5x加仑来配出 2 加仑的混合颜料: $3x+5x=2 \Rightarrow x=0.25$ 加仑,因此需要 0.75 加仑的白色颜料和 1.25 加仑的黑色颜 料,而这些颜料只能以 1 加仑一筒或 0.5加仑一筒的形式购买,所以需要买 1 加仑 白色颜料和 1.5 加仑的黑色颜料,共 2.5加仑。
- Virginia, Adrienne 和 Dennis 一共教了 96 年的历史课。若 Virginia 的教龄比 Adrienne 多 9 年,且比 Dennis 少 9 年,问 Dennis 教了多少年?
- 解:本题的正确答案为(D)。设 Virginia 的教 龄为 x 年,则 Adrienne 的教龄为 x-9年,而 Dennis 的教龄为 x+9 年,根据题 意可得: $x+(x+9)+(x-9)=96 \Rightarrow x=32$ 年,所 以 Dennis 的教龄为 x+9=41 年。
- 23. 一个商人花了 300 美元购进了一批 x个相同的计算器。该商人用两个计算器作为展品,而其他的每个计算器都以高出这些计算器平均成本 5 美元的价格售出。若卖计算器的总收入比这批计算器的成本多 120 美元,则这一批货中有多少个计算器?
- 解:本题的正确答案为(E)。根据题意可得到 如下方程:

 $\left(\frac{300}{x}+5\right)(x-2) = 300+120 \Rightarrow x = 30$

24. 在 1985年,一公司把某一个牌子的鞋卖 给零售商,每双鞋的价格是固定不变。 在 1986年该公司卖给零售商的鞋的数量 减少了 20%,但同时每双鞋的单价增加 20 percent, while the price per pair increased by 20 percent. If the company's revenue from the sale of the shoes in 1986 was \$3.0 million, what was the approximate revenue from the sale of the shoes in 1985?

- (A) \$2.4 million
 (B) \$2.9 million
 (C) \$3.0 million
 (D) \$3.1 million
 (E) \$3.6 million
- 25. There were 36,000 hardback copies of a certain novel sold before the paperback version was issued. From the time the first paperback copy was sold until the last copy of the novel was sold, 9 times as many paperback copies as hardback copies were sold. If a total of 441,000 copies of the novel were sold in all, how many paperback copies were sold?

(A) 45,000	(B) 360,000
(C) 364,500	(D) 392,000
(E) 396,900	

- 26. The total cost for Company X to produce a batch of tools is \$10,000 plus \$3 per tool. Each tool sells for \$8. The gross profit earned from producing and selling these tools is the total income from sales minus the total production cost. If a batch of 20,000 tools is produced and sold, then Company X's gross profit per tool is (A) \$3.00 (B) \$3.75 (C) \$4.50
 - (D) **\$**5.00 (E) **\$**5.50

了 20%。若该公司在 1986 年卖鞋的销售 收入是 3 百万美元,则它在 1985 年卖鞋 的销售收入大约是多少?

解:本题的正确答案为(D)。设1985年该公司共卖出鞋 a 双,每双鞋的单价是 b 美元,且1985年卖鞋的销售收入是 x 美元,则根据题意可得:

$$\frac{ab}{(1-20\%) (1+20\%) ab} = \frac{x}{3}$$
$$\Rightarrow x = \$ 3.125 \text{ million}$$

- 25. 某一本小说在简装本发行之前有 36,000 本精装本被售出。从卖出第一本简装本开 始到卖出最后一本小说为止,简装本的销 售量是精装本的 9 倍。若总共卖出了 441,000本小说,则卖出的简装本小说有 多少?
- 解:本题的正确答案为(C)。设简装本的销售 量为 x,则根据题意可列出如下方程:

$$36,000 + x + \frac{x}{9} = 441000$$
$$\Rightarrow x = 364,500$$

- 26. 公司 X 生产一批工具的总成本是 10,000 美元,每生产一个工具再外加 3 美元。每 件工具的售价是 8 美元。生产和销售这些 工具的 毛利润 (gross profit)是销售的总收 入减去生产的总成本。若一批 20,000 件 工具被生产和销售,则公司 X 在每件工具 上的毛利润是多少?
- 解:本题的正确答案为(C)。公司X生产20,000件工具的总成本是:10,000+20,000×3=70,000美元;这20,000件工具的销售收入为:20,000×8=160,000美元,所以每件工具的毛利润为:

$$\frac{160,000-70,000}{20,000} = 4.5 \notin \pi$$

27. A retailer sold an appliance for 30 percent above cost, which represented a gross profit of \$21.00. For what price did the retailer sell the appliance?

(A) \$ 27.30	(B) \$ 51.00
(C) \$ 63.00	(D) \$ 70.00
(E) \$ 91.00	

28. A breakfast that consists of l ounce of corn puffs and 8 ounces of fruit X provides 257 calories. When 8 ounces of fruit Y is substituted for the 8 ounces of fruit X, the total number of calories is reduced to 185. If fruit X provides 1.8 times as many calories as fruit Y, how many calories as fruit Y, how many calories of fruit Y alone provide?

(A) 11.25	(B) 72	(C) 90
(D) 95	(E) 129.6	

29. If it is 6 : 27 in the evening on a certain day, what time in the morning was it exactly 2,880,717 minutes <u>earlier</u>? (Assume standard time in one location.)
(A) 6 : 22 (B) 6 : 24 (C) 6 : 27

(D) 6:30 (E) 6:32

30. Seed mixture X is 40 percent ryegrass and 60 percent bluegrass by weight; seed mixture Y is 25 percent ryegrass and 75 percent fescue. If a mixture of X and Y contains 30 percent ryegrass, what percent of the weight of

27. 一零售商以高出成本 30%的价格卖了一件 用具,所得的毛利润为 21.00 美元。问该 零售商出售这件器具的价格是多少?

解:本题的正确答案为(E)。设这件器具的成本为 x 美元,则根据题意可得:

30% *x*=21⇒*x*=70 美元

所以这件器具的出售价格为 70(1+30%)=91 美元。

- 28. 一份由1 盎斯的玉米面和8 盎斯的X水 果构成的早餐供给257 卡的热量。当用8 盎斯的Y水果代替8 盎斯的X水果时, 总热量减少到185 卡。若水果X供给的 热量是水果Y供给的热量的1.8倍,则 8 盎斯的水果Y单独能供给多少卡的热量?
- 解:本题的正确答案为(C)。设8盎斯的水果 Y 单独能供给 x 卡的热量,则8盎斯的水 果 X 单独能供给 1.8x 卡的热量,根据题 意可得:

1.8x - x = 257 - 185 $\Rightarrow x = 90 \ddagger$

- 29. 若现在是某天晚上的6:27,则在2,880,717分钟之前是早上的几点钟?(假设时间是同一个地方的标准时间)
- 解:本题的正确答案为(D)。该题也即让考生 求2,880,717分钟除以一天的分钟数所余 的时间是多少小时多少分:

 $\frac{2,880,717}{24\times60}$ =2,000 天+717 分钟

717 分钟为 11 小时另 57 分钟,所以 在晚上 6:27 分钟前的 11 小时 57 分钟是 早上的 6 点 30 分。

30. 混和种子 X 中含有 40%的黑麦草(ryegrass) 和 60%的 蓝牧草(bluegrass)(按重量算);
混和种子 Y 中含有 25%的黑麦草和 75%的 牛毛草。若 X 与 Y 的混和种子中含有 30% 的黑麦草,则该混和种子中含 X 的重量百

this mixture is X?

(A) 10% (B)
$$33\frac{1}{3}\%$$
 (C) 40%
(D) 50% (E) $66\frac{2}{3}\%$

31. Harry started a 6-mile hike with a full 10cup canteen of water and finished the hike in 2 hours with 1 cup of water remaining in the canteen. If the canteen leaked at the rate of 1 cup per hour and Harry drank 3 cups of water during the last mile, how many cups did he drink per mil during the first 5 miles of the hike?

(A)
$$\frac{4}{5}$$
 (B) $\frac{5}{6}$ (C) 1
(D) $\frac{6}{5}$ (E) $\frac{5}{4}$

32. On a certain scale of intensity, each increment of 10 in magnitude represents a tenfold increase in intensity. On this scale, an intensity corresponding to a magnitude of 165 is how many times an intensity corresponding to a magnitude of 125?
(A) 40 (B) 100 (C)400

(D) 1,000 (E) 10,000

- **33.** On a certain day it took Bill three times as long to drive from home to work as it took Sue to drive from home to work. How many Kilometers did Bill drive from home to work?
 - Sue drove 10 kilometers from home to work, and the ratio of

distance driven from home to work time to drive from home to work

was the same for Bill and Sue that day.

(2) The ratio of

分比是多少?

- 解:本题的正确答案为(B)。设该混和种子中 含X的重量百分比是 x,则含Y的重量百 分比是 1-x,根据题意可得: $40\%x+25\%(1-x)=30\%\Rightarrow x=33\frac{1}{3}\%$
- 31. Harry 在开始一个 6 英里的徒步旅行时带 了一满罐容量为 10 茶杯的水,他在 2 小时内完成了旅程,最后水罐中还剩下 1 杯水。若此水罐每小时漏 1 杯水,且 Harry 在最后 1 英里喝了 3 杯水,则他在旅程的前 5 英里中平均每英里喝了多少杯水?
- 解:本题的正确答案为(A)。前五英里喝的水的 杯数为:总量10杯减去最后剩的1杯,最 后1小时喝的3杯以及整个旅程中漏掉的2 杯,即为10-1-3-2=4杯。所以Harry 前五英里平均每英里喝的水量为4/5杯。
- 32. 在某一强度等级中,大小每增加 10 表示 强度增加 10 倍。在这个标度中,对应于 165 的强度是对应于大小为 125 的强度的 多少倍?
- 解:本题的正确答案为(E)。165 比 125 大 40, 根据大小每增加 10 强度就增加 10 倍,可 知大小为 165 的强度是大小为 125 的强度 的 10×10×10×10=10,000 倍
- 33. 某一天,Bill 从家开车上班所用的时间是 Sue 从家开车上班所用的时间的3倍。问 Bill 从家出发开车上班要开多远?
 - (1) Sue 开车上班要开 10 公里,且 Bill 与 Sue 的

<u>从家到公司开车所行的距离</u> 从家到公司开车所用的时间 的比值相同。

(2) Sue 的

从家到公司开车所行的距离 从家到公司开车所用的时间 的比值是 64 公里/小时。 distance driven from home to work time to drive from home to work for Sue that day was 64 kilometers per hour.

- **34.** At a certain university, if 50 percent of the people who inquire about admission policies actually submit applications for admission, what percent of those who submit applications for admission enroll in classes at the university?
 - Fifteen percent of those who submit applications for admission are accepted at the university.
 - (2) Eighty percent of those who are accepted send a deposit to the university.

- **35.** A jewelry dealer initially offered a bracelet for sale at an asking price that would give a profit to the dealer of 40 percent of the original cost. What was the original cost of the bracelet?
 - After reducing this asking price by 10 percent, the jewelry dealer sold the bracelet at a profit of \$403.
 - (2) The Jewelry dealer sold the bracelet for \$1,953.

- 解:本题的正确答案为(A)。从(1)中可知, Bill和 Sue两人上班的开车速度是一样的, 而 Bill所用的时间是 Sue 的 3 倍,所以 Bill的家离公司的距离为 Sue 的 3 倍,即 为 3×10=30 公里,所以(1)充分;(2)明 显不充分,因为它没给出 Sue 开车上班的 速度与 Bill 开车上班的路程之间的关系。
- 34. 在某一大学,若有 50%的询问入学政策的 人确实提交了入学申请,问这些提交了入 学申请的人中有百分之多少的人登记入 学?
 - (1)提交申请的人中有 15%的人被该大学 接受。
 - (2)被接受的人中有 80%的人向该大学递送了保证金。
- 解:本题的正确答案为(E)。大多数的考生会 认为(1)充分,其实不然。(1)只是说明了 校方愿意接受的比例,而这些人愿不愿意 入学注册,还是两可之间的事,所以(1) 不充分;(2)更不充分,因为(2)中并未给 出被接受的人数与递交了申请的人数和最 后注册入学的人数之间的关系。(1)+(2) 也不充分,因为"send a deposit to the university"和"enroll in classes at the university"之间并没有必然的联系。
- 35. 一珠宝商最初拿出一个手镯出售时,要价 将会使其获得原价 40%的利润。问该手镯 的原价是多少?
 - (1)要价降低 10%后,该珠宝商销售这个 手镯获得了 403 美元的利润;
 - (2) 该珠宝商以 1,953 美元的价格卖出了 这个手镯。
- 解:本题的正确答案为(A)。设这个手镯的原 价为 x 美元,则其最初的要价为 (1+ 40%)x美元,根据(1)可得:

(1-10%)(1+40%)x-x

=403⇒*x*=1550 美元

所以(1)充分;

193

36. Before play-offs, a certain team had won 80 percent of its games. After play-offs, what percent of all its games had the team won?(1) The team competed in 4 play-off games.

(2) The team won all of its play-off games.

- 37. Last Tuesday a trucker paid \$155.76, including 10 percent state and federal taxes, for diesel fuel. What was the price per gallon for the fuel if the taxes are excluded?
 - The trucker paid \$0.118 per gallon in state and federal taxes on the fuel last Tuesday.
 - The trucker purchased 120 gallons of the fuel last Tuesday.

- **38.** Pam and Ed are in a line to purchase tickets. How many people are in the line?
 - There are 20 people behind Pam and 30 people in front of Ed.
 - (2) There are 5 people between Pam and Ed.

(2)不充分,因为该珠宝商是否以其最初的要价售出这个手镯不得而知,从而也就 无法求出该手镯的原价。

- 36. 在最后决赛之前,某一队赢得了 80%的比赛。在决赛之后,该队共赢得了百分之多少的比赛?
 (1)该队共参加了 4 场决赛:
 - (2) 该队赢得了所有的决赛。
- 解:本题的正确答案为(E)。(1)不充分,因为 (1)不知道决赛之前该队参加了多少场比 赛;(2)同样不知道决赛之前该队参加了 多少场比赛;(1)+(2)同理也不充分。
- 37. 上星期,一个卡车司机为内燃机的汽油付 了 155.76 美元,其中包括 10%的国家和 联邦的税款。问不含税的每加仑汽油的价 格是多少?
 - (1)上星期该卡车司机给每加仑汽油付了0.118 美元的国家和联邦的税款
 - (2) 上星期该卡车司机购卖了 120 加仑的 汽油。
- 解:本题的正确答案为(D)。根据题意可知每 加仑汽油的税款是其价格的10%,所以每 加仑汽油不含税的价格是税款的9倍,即 为9×0.118=1.062美元,因此(1)充分; 根据(2)可得每加仑汽油不含税款的价格 为:

 $\frac{155.76 \times 90\%}{120}$ =1.168 美元 所以(2)也充分。

38. Pam 和 Ed 排队买票。问该队中有多少人?
(1) Pam 后面有 20 人,且 Ed 前面有 30 人;

(2) Pam 和 Ed 之间有 5 个人。

解:本题的正确答案为(E)。(1)和(2)都明显 不充分,但大多数的考生会认为(1)+(2) 充分,他们认为此时队列中的人数应为 30+1+5+1+20=57人。选择(C)选项

- **39.** The price per share of stock X increased by 10 percent over the same time period that the price per share of stock Y decreased by 10 percent. The reduced price per share of stock Y was what percent of the original price per share of stock X?
 - The increased price per share of stock X was equal to the original price per share of stock Y.
 - (2) The increase in the price per share of stock X was $\frac{10}{11}$ the decrease in the price per share of stock Y.

- 40. In year X a total of 355 billion dollars was spent for health care in the United States, 30 percent of which was spent by private health insurance companies. Was the amount spent for health care by the federal government's medicare program less than 60 billion dollars?
 - (1) In year X medicare spent more than $\frac{1}{2}$,
 - but less than $\frac{2}{3}$, of the amount spent by the private health insurance companies for health care.

的考生都假定认为 Ed 在 Pam 的前面,而 实际上究竟 Pam 和 Ed 谁在前谁在后题目 中并未给出,所以该队中有多少人就是不 定的,当 Ed 在 Pam 的后面时,该队列中 的人数为 20+30-5=45 人。

- 39.股票X每股价格升高10%的同时,股票Y 的每股价格降低了10%。问股票Y每股 减少的钱是股票X的每股原始价格的百分 之多少?
 - (1)股票 X 涨价后每股的价钱与股票 Y 每 股的原始价格相同;
 - (2) 股票 X 每股涨钱是股票 Y 每股降的钱
 的¹⁰/₁₁。
- 解:本题的正确答案为(D)。设股票 X 每股的 原始价格为 x,则由(1)可得股票 Y 的每 股原始价格为 (1+10%)x,每股减少的 钱为 10%(1+10%)x,因此股票 Y 每股 减少的钱与股票 X 的每股原始价格的比为 10%(1+10%)x×100%=11%,所以(1) 是充分的;根据(2)可得股票 Y 每股降的 钱为 $\frac{11}{10}$ ×10%×x=11%x,也即股票 Y 每股减少的钱是股票 X 的每股原始价格的 11%,所以(2)也是充分的。
- 40. 在 X 年,美国的总保健费用是 3550 亿美元,其中 30%的费用由私人健康保险公司支付。问联邦政府的医疗保险计划所支出的保健费用比 600 亿美元少吗?
 - (1) 在 X 年,联邦政府的医疗保险计划在 保健上所花的钱比私人保健公司所花 钱的 $\frac{1}{2}$ 要多,但不到 $\frac{2}{3}$;
 - (2)在X年,联邦政府的医疗保险计划在 保健上所花的钱比私人保健公司少 500亿美元。
- 解:本题的正确答案为(B)。私人保健公司所花的保健费用为 3550×30%=1005 亿美元,

- (2) In year X medicare spent 50 billion dollars less for health care than the amount spent by private health insurance companies.
- 41. Larry saves x dollars per month. Will Larry's total savings one year from now exceed his present savings by at least \$500? (Assume that there is no interest.)
 - In 6 months Larry's total savings will be \$900.
 - (2) In 3 months Larry's total savings will exceed his present savings by \$150.

- **42.** An employee is paid 1.5 times the regular hourly rate for each hour worked in excess of 40 hours per week, excluding Sunday, and 2 times the regular hourly rate for each hour worked on Sunday. How much was the employee paid last week?
 - The employee's regular hourly rate is \$10.
 - (2) Last week the employee worked a total of 54 hours but did not work more than 8 hours on any day.

根据(1)可得,联邦政府的医疗保险计划在 保健上所花的钱在502.5亿美元到670亿 美元之间,因此(1)不充分;根据(2)可得 联邦政府的医疗保险计划在保健上所花的 钱为1005-500=505亿美元,所以(2)充分 地说明了联邦政府的医疗保险计划在保健 上所花的钱比600亿美元少。

- 41. Larry 每个月存 x 美元。Larry 从现在起 一年的总存款能比他现在的存款至少多 500 美元吗?(假设存款不计利息)
 - (1) 在 6 个月后, Larry 的总存款将会达 到 900 元;
 - (2) 三个月后, Larry 的总存款将会比他 某前的存款多 150 美元。
- 解:本题的正确答案为(B)。设 Larry 某前的 存款为 y 美元,则根据(1)可得 6x+y= 900,因为 x和 y 都是未知数,所以无法 求出 Larry 一个月究竟存多少钱或 Larry 某前的存款是多少,从而也不知道一年下 来,Larry 存了多少钱,所以(1)不充分; 由(2)可得 3x=150,也即 Larry 每个月存 50 美元,一年下来他可以存 600 美元,所 以(2)可以充分地说明 Larry 从现在起一 年的总存款能比他现在的存款至少多 500 美元。
- 42. 一雇员工作超过 40 小时后,每小时的工 资是通常的 1.5 倍,不包括星期天,他在 星期天每小时的工资是通常的 2 倍。问上 星期该雇员得了多少钱?
 - (1) 该雇员的平常工资是每小时 10 美元;
 - (2) 上星期该雇员总共工作了54小时,但 没有任何一天的工作时间超过8小时。
- 解:本题的正确答案为(E)。(1)不充分,因为 (1)不知道工作的时间是多少;(2)也不充 分,因为不知道每小时的工资是多少;由 (2)可知,该雇员上周一定是工作了7天, 在每天不超过8小时的情况下分配这54 小时有两种分法:第一种分法是其中有一

- **43.** 点(*x*, *y*)在左图所示的直角坐标系的哪一 个象限(quadrant)?
- 解:本题的正确答案为(B)。点(x, y)在坐标 平面内的位置由x和y的正负决定。由x+y < 0 可推知x和y的符号有三种可能: 即①x和y都小于 0,对应于点(x, y)在 第三象限;②x < 0, y > 0, |x| > |y|, 此时对应于点(x, y)在第二象限;③x >0,y < 0, |x| < |y|,此时对应于点(x, y)在第四象限。所以(1)不充分;点(1, -7)是第四象限内的点,所以(2)充分。
- 44. 从 1985 年以来,公司 R 每年的利润增长 额相同。问公司 R 在 1991 年的年利润是 多少?
 - (1)在1985年公司R的年利润是212,000 美元;在1989年公司R的年利润是 242,000美元;
 - (2)从1985年以来公司X的年利润每年 增长7,500美元。
- 解:本题的正确答案为(A)。由(1)可得公司 X 的年利 润从 1985 年到 1989 年增长了 242,000-212,000=30,000 美元,所以平 均每年增长 7,500 美元,因此到 1991 年 该公司的年利润为 242,000+7,500×2= 257,000 美元,所以(1)充分;因为(2)中 不知道 1985 年的年利润是多少,因此无 法求出 1991 年的年利润是多少,所以(2) 不充分。

43.

Point (x, y) has in which quadrant of the rectangular coordinate system shown above?

(1) x+y < 0 (2) x=1 and y=-7

- **44.** Company R's annual profit has increased by a constant amount each calendar year since 1985. What was Company R's annual profit in 1991 ?
 - In 1985 Company R's annual profit was \$212,000; in 1989 Company R's annual profit was \$242,000.
 - (2) Company R's annual profit has increased by \$7,500 each year since 1985.

197

- **45.** While driving on the expressway, did Robin ever exceed the 55-miles-per-hour speed limit?
 - (1) Robin drove 100 miles on the expressway.
 - (2) Robin drove for 2 hours on the expressway.

- **46.** At what speed was a train traveling on a trip when it had completed half of the to-tal distance of the trip?
 - (1) The trip was 460 miles long and took4 hours to complete.
 - (2) The train traveled at an average rate of 115 miles per hour on the trip.

47. A, B, and C each drove 100-mile legs of a 300-mile course at speeds of 40, 50, and 60 miles per hour, respectively. What fraction of the total time did A drive?

(A)
$$\frac{15}{74}$$
 (B) $\frac{4}{15}$ (C) $\frac{15}{37}$
(D) $\frac{3}{5}$ (E) $\frac{5}{4}$

- **45.** 当在高速公路上开车时, Robin 是否曾经 超过每小时 55 英里的时速限制?
 - (1) Robin 在该高速公路上开车行驶了 100 英里;
 - (2) Robin 在该高速公路上开车的时间是 2 小时。
- 解:本题的正确答案为(E)。(1)和(2)单独明显都不充分;有些考生会认为(1)+(2)充分,根据(1)+(2)可得Robin的平均速度是每小时50英里,但因为题目中并未说明Robin在该高速公路是匀速行驶的,所以无法判断Robin是否超速。
- **46.** 当火车完成总旅程的一半时,它运行的速度是多少?
 - (1) 该旅程全长 460 英里,要花 4 小时完成;
 - (2)该旅程中火车的平均速度是 115 英 里/小时。
- 解:本题的正确答案为(E)。因为题目中以及 题设条件中都未给出火车在整个旅程中是 匀速行驶的,所以无法根据平均速度求出 某一特定时刻火车的速度,所以(1),(2) 以及(1)+(2)都不充分。
- 47. 在一个 300 英里的路程中, A, B和C各 驾驶 100 英里,速度分别是每小时 40,50 和 60 英里。问A开车所用的时间占总时 间的比例是多少?
- 解:本题的正确答案为(C)。根据时间等于路 程除以速度可得 A, B和 C 开车所用的时 间分别为 $\frac{100}{40}$, $\frac{100}{50}$, $\frac{100}{60}$ 小时,所以 A 开 车所用的时间占总时间的比例是:

$$\frac{\frac{100}{40}}{\frac{100}{40} + \frac{100}{50} + \frac{100}{60}} = \frac{15}{37}$$

48. In a student body the ratio of men to women was 1 to 4. After 140 additional men were admitted, the ratio of men to women became 2 to 3. How large was the student body after the additional men were admitted?

(A) 700	(B) 560	(C) 280
(D) 252	(E) 224	

49. If taxi fares were \$1.00 for the first 1/5
mile and \$0.20 for each 1/5 mile there after, then the taxi fare for a 3-mile ride was
(A) \$1.56 (B) \$2.40 (C) \$3.80

(D) **\$**4.20 (E) **\$**2.80

50. A digital wristwatch was set accurately at 8:30 a.m. and then lost 2 seconds every 5 minutes. What time was indicated on the watch at 6:30 p.m. of the same day if the watch operated continuously until that time?

(A) 5:56	(B) 5:58	(C) 6 : 00
(D) 6:23	(E) 6:26	

51. A 5-liter jug contains 4 liters of a saltwater solution that is 15 percent salt. If 1.5 liters of the solution spills out of the jug, and the jug is then filled to capacity with water, approximately what percent of

- 48. 在一学生团体中,男生与女生的比是 1:4。若再额外增加140名男生,则男女 的比例变为2:3。问额外加入男生后, 该学生团体的人数是多少?
- 解:本题的正确答案为(B)。设未加入男生之前,该学生团体的男生人数为 k,则女生人数为 4k,加入男生之后,男生的人数变为 k+140,根据题意可得:

$$\frac{k+140}{4k} = \frac{2}{3} \Rightarrow k = 84$$

所以加入男生后该学生团体的人数为 (k+140)+4k=5k+140=560人

- 49. 若出租汽车费是前¹/₅英里1美元,以后每
 多行¹/₅英里,再多加0.20美元,那么出租汽车行驶3英里的车费是多少?
 - 解:本题的正确答案为(C)。根据题意可直接 列出方程:

3 英里的车费 =1+
$$\left(3-\frac{1}{5}\right)$$
÷ $\frac{1}{5}$ ×0.20
=3.8 美元

- 50. 早上 8:30 时把一数字手表校准,该手表 每 5 分钟慢两秒。若手表连续不停地走下 去,问在当天下午 6:30 时,手表上所显 示的时间是多少?
- 解:本题的正确答案为(E)。从上午8点半到 下午6点半,共经过了10个小时,所以 根据题意可求出该手表在这10个小时中 所慢的时间为:(10×60)÷5×2=240秒, 该手表在10个小时内慢了4分钟,所以 在下午6点半时,该手表上的时间是6点 26分。
- 51. 一个5升的罐子装有4升浓度为15%的盐水。若1.5升的盐溶液漏出罐子后,又用水把罐子加满,问最后罐子中的盐溶液的浓度是百分之多少?
- 解:本题的正确答案为(A)。设最后罐子中的

the resulting solution in the jug is salt?

(A) $7 \frac{1}{2} \frac{0}{2}$	(B) $9\frac{3}{8}\frac{1}{8}$	(C) $10 \frac{1}{2} \%$
(D) 12%	(E) 15%	

52. A merchant sells an item at a 20 percent discount, but still makes a gross profit of 20 percent of the cost. What percent of the cost would the gross profit on the item have been if it had been sold without the discount?

(A)	20%	(B)	40%	(C)	50%
(D)	60%	(E)	75%		

53. A milliner bought a lot of hats, $\frac{1}{4}$ of which were brown. The milliner sold $\frac{2}{3}$ of the hats including $\frac{4}{5}$ of the brown hats. What fraction of the unsold hats were brown?

(A)
$$\frac{1}{60}$$
 (B) $\frac{2}{15}$ (C) $\frac{3}{20}$
(D) $\frac{3}{5}$ (E) $\frac{3}{4}$

54. Working independently, Tina can do a certain job in 12 hours. Working independently, Ann can do the same job in 9 hours. If Tina works independently at the job for 8 hours and then Ann works independently, how many hours will it take Ann to complete the remainder of the job?

盐溶液的浓度为 x,则根据题意可得:

$$(4-1.5) \times 15\% = 5x \Rightarrow x = 7\frac{1}{2}\%$$

- 52. 一商人把一件商品打折 20%卖出后,仍获 得成本价 20%的毛利润。若此商品不打折 出售,则该商人可以获得的毛利润为成本 价的百分之多少?
- 解:本题的正确答案为(C)。设商品的成本价为 a,不打折出售时该商人可以获得的毛利润为成本价的百分之 x,则根据题意可得:

 $[80\% \times (1+x)]a = (1+20\%)a$ $\Rightarrow x = 50\%$

- **53.** 一小贩购进许多帽子,其中有 $\frac{1}{4}$ 是棕色的。该小贩已卖出了这些帽子的 $\frac{2}{3}$,其中包括 $\frac{4}{5}$ 的棕色帽子。问未买出的帽子中,棕色帽子占的比例是多少?
 - 解:本题的正确答案为(C)。根据题意可知, 总共还有 $\frac{1}{3}$ 的帽子未卖出去,其中未卖出 的棕色帽子占帽子总数的比例为 $\frac{1}{4}$ × $\left(1-\frac{4}{5}\right) = \frac{1}{20}$,所以未卖出去的帽子中, 棕色帽子占的比例为:

$$\frac{1}{20} \div \frac{1}{3} = \frac{3}{20}$$

- 54. Tina 单独完成某项工作需 12 小时, Ann 单独完成同一工作需 9 小时。若 Tina 单 独干这项工作 8 小时后由 Ann 来接着单独 完成这项工作,问 Ann 还要花多长时间 来完成这项工作的剩余部分?
- 解:本题的正确答案为(E)。根据题意可知, Tina每小时完成这项工作的 $\frac{1}{19}$, Ann 每

(A)
$$\frac{2}{3}$$
 (B) $\frac{3}{4}$ (C) 1
(D) 2 (E) 3

55. A merchant purchased a jacket for \$60 and then determined a selling price that equalled the purchase price of the jacket plus a markup that was 25 percent of the selling price. During a sale, the merchant discounted the selling price by 20 percent and sold the jacket. What was the merchant's gross profit on this sale?

(A) \$0
(B) \$3
(C) \$4
(D) \$12
(E) \$15

56. A person bought a ticket to a ball game for \$15 and later sold the ticket for \$60. What was the percent increase in the price of the ticket?

(A) 25%	(B) $33\frac{1}{3}\%$	(C) 75%
(D) 300%	(E) 400%	

57. Forty percent of the rats included in an experiment were male rats. If some of the rats died during the experiment and 30 percent of the rats that died were male rats, what was the ratio of the death rate among the male rats to the death rate among the female rats?

小时可以完成这项工作的 $\frac{1}{9}$,设Ann还要花x小时来完成这项工作的剩余部分,则有:

 $\frac{8}{12} + \frac{x}{9} = 1 \Rightarrow x = 3$

- 55. 一个商人花 60 美元购进了一件夹克,然后把该夹克的销售价格定为购进价格加上销售价格的 25%。在销售期间,该商人把这件夹克的销售价格 打折(discount)20%售出。这次销售中商人的 毛利润(gross profit)是多少?
- 解:本题的正确答案为(C)。设该商人所定的 销售价格为 x美元,则此价格为购买价格 加上销售价格 x的 25%,根据题意可得到 如下方程:

$$x = 60 + x \cdot 25\%$$

⇒x=80 美元,所以毛利润为: 80×(1-20%)-60=4 美元

- 56. 一个人用 15 美元买了一张舞会票,后来 又以 60 美元的价格出售。问该票的价格 增加了百分之多少?
- 解:本题的正确答案为(D)。大多数考生会认为百分比无法大于100,而认为这道题无法解,或干脆就把比例搞反,得出33 1/3%的错误结果。实际上百分比是可以大于100的,正如本题所示。根据题意可得该票的价格增加的百分比为:

 $\frac{60\!-\!15}{15}\!\times\!100\,\%\!=\!300\,\%$

- 57. 某一实验中所包括的老鼠中有 40%是雄性 老鼠。若一些老鼠在实验中死亡,且死亡 的老鼠中有 30%是雄性老鼠,那么雄性老 鼠与雌性老鼠的死亡率的比率为多少?
- 解:本题的正确答案为(A)。设这些老鼠的死 亡的百分比为 x,则雄性老鼠的死亡率 为:

(A)
$$\frac{9}{14}$$
 (B) $\frac{3}{4}$ (C) $\frac{9}{11}$
(D) $\frac{6}{7}$ (E) $\frac{7}{8}$

58. A decorator bought a bolt of defective cloth that he judged to be 3/4 usable, in which case the cost would be \$0.80 per usable yard. If it was later found that only 2/3 of the bolt could be used, what was the actual cost per usable yard?
(A) \$0.60 (B) \$0.90 (C) \$1.00 (D) \$1.20 (E) \$1.70

59. Four cups of milk are to be poured into a 2-cup bottle and a 4-cup bottle. If each bottle is to be filled to the same fraction of its capacity, how many cups of milk should be poured into the 4-cup bottle?

(A)
$$\frac{2}{3}$$
 (B) $\frac{7}{3}$ (C) $\frac{5}{2}$
(D) $\frac{8}{3}$ (E) 3

60. A total of 774 doctorates in mathematics were granted to United States citizens by American universities in the $1972 \sim 1973$ school year, and W of these doctorates were granted to women. The total of such doctorates in the $1986 \sim 1987$ school year was 362, and w of these were granted to women. If the number of doctorates in mathematics granted to female citizens of the United States by American universities decreased from the 1972

$$\frac{30\% \times x}{40\%} = \frac{3}{4}x$$

雌性老鼠的死亡率为:

$$\frac{(1-30\%)x}{1-40\%} = \frac{7}{6}x$$

所以雄雌死亡率的比率为:

$$\frac{3}{4}x \div \frac{7}{6}x = \frac{3}{4} \times \frac{6}{7} = \frac{9}{14}$$

- 58. 一室内装饰师买了一匹有瑕疵的布,他判断认为有³/₄的布是可以用的,此时每码可以用的布的成本为 0.80 美元。若后来发现这匹布中仅有²/₃的布是可以用的,那么每码可以用的布的实际成本是多少?
- 解:本题的正确答案为(B)。设这匹布共有 a 码,每码可以用的布的实际成本为 x 美 元,则根据题意可得:

 $\frac{3}{4}a$ ×0.80= $\frac{2}{3}ax$ ⇒x=0.90 美元

59.4杯牛奶要倒入一个容量为两杯的瓶中和 一个容量为4杯的瓶中。若每个瓶中充入 的牛奶与其容积的比例都相同,则容量为 4杯的瓶中有多少杯牛奶?

解:本题的正确答案为(D)。设倒入4杯 瓶中的牛奶有 x杯,根据题意可得:

$$\frac{x}{4} = \frac{4-x}{2} \Rightarrow x = \frac{8}{3}$$

60. 在 1972~1973 学年美国的大学数学系共授予美国公民 774个博士学位,其中有 W 个博士学位授予给了女性。1986~1987 学 年这样的博士学位为 362 个,其中有 w 给了女性。若美国大学数学系从 1972~ 1973 学年到 1986~1987 学年授予给女性的博士学位数在下降,那么下降的百分比 低于 10%吗?

解:本题的正确答案为(C)。该题也即问

 ${\sim}1973$ school year to the 1986 ${\sim}1987$ school year, was the decrease less than 10 percent?

(1)
$$\frac{1}{10} < \frac{W}{774} < \frac{1}{9}$$

(2) $W = w + 5$

- 61. If the ratio of men to women employed by Company S in 1975 was $\frac{1}{2}$, what is the ratio of men to women employed by Company S in 1976?
 - (1) Company S employed 20 more women in 1976 than in 1975.
 - (2) Company S employed 20 more men in 1976 than in 1975.

62. If a motorist had driven 1 hour longer on a certain day and at an average rate of 5 miles per hour faster, he would have covered 70 more miles than he actually did. How many more miles would he have covered than he actually did if he had driven 2 hours longer and at an average rate of 10 miles per hour faster on that day?
(A) 100 (B) 120 (C) 140

 $\frac{W-w}{W}$ 是否小于 10%。(1) 不充分,因为 (1)中未涉及 w 的值,所以无法判断上面 的算式是否小于 10%,(2) 也不充分,因 为由(2)中能得到 W-w=5,而得不到 $\frac{W-w}{W}$ 的值,所以也无法判断是否小于 10%;(1)+(2)充分: $\frac{1}{10} < \frac{W}{774} < \frac{1}{9} \Rightarrow 77.4 < W < 86,因此$ $\frac{W-w}{W} = \frac{5}{W}$ 的值必然小于 10%。

- 61. 若公司 S 在 1975 年所雇用的人中,男女之比为¹/₂,问在 1976 年公司 S 中的男女之比是多少?
 - (1)公司S在1976年雇用的女工比1975 年雇用的女工多20人;
 - (2)公司S在1976年雇用的男工比1975 年雇用的男工多20人。
- 解:本题的正确答案为(E)。设在1975年公司S中的男工人数为k,则女工人数为2k,根据(1)可得公司S在1976年的女工人数为2k+20,根据(2)中得公司S在1976年的男工人数为k=20。(1)和(2)单独都无法求出1976年公司S中的男女之比,所以(1)和(2)单独都不充分;因为不知道k的值究竟是多少,所以也无法求出(k+20)与(2k+20)的比是多少,所以(1)+(2)也不充分。
- 62. 若一个司机某天多驾驶一小时且每小时的 平均速度快5英里,他将会比实际多行驶 70英里。若他多驾驶两小时,且每小时的 平均速度快10英里,则他将比实际上多 驾驶多少英里?
- 解:本题的正确答案为(D)。设该司机这天的 实际驾驶时间为t小时,平均驾驶速度为x 英里/小时,根据题意可得:

(t+1)(x+5) = xt+70

203

多驾驶两小时,平均速度快10英里

时,将多驾驶的英里数为:

- (t+2)(x+10) xt = 10t+2x+20= 2(5t+x)+20 = 2×65+20 = 150
- 63. 如上图所示,汽车Y和Z沿平行的道路并 排行驶。当汽车Y到达P点时,向左叉 x[°],且改变速度,继续与Z保持并排,如 图中的虚线所示。问汽车Y在P点以后的 速度是汽车Z的百分之多少?
 (1)汽车Z的速度是每小时50英里;
 (2) x=45。
- 解:本题的正确答案为(B)。知道汽车 Z 的速 度,无法求出汽车 Y 在 P 点以后的速度, 所以(1)不充分;当 $x=45^{\circ}$,汽车 Y 要与 汽车 Z 继续保持并排,则其走过的距离在 P 点以后一定是汽车 Z 的 $\sqrt{2}$ 倍,所以速度 也一定是汽车 Z 的 $\sqrt{2}$ 倍,所以汽车 Y 在 P 点以后的速度是汽车 Z 的 141.4%。

- 64. 某工厂生产的电灯开关中有 $\frac{1}{5}$ 是有毛病 的。 $\frac{4}{5}$ 的有缺陷的开关被剔除,且有 $\frac{1}{20}$ 的无缺陷的开关会被错误地剔除。若所 有未被剔除的开关都被出售,则该工厂 出售的开关中有百分之多少的是有缺陷 的?
- 解:本题的正确答案为(B)。根据题意可得出 售的有缺陷的开关占总量的比率:

$$\frac{1}{5} \times \frac{1}{5} = \frac{1}{25}$$

出售的无缺陷开关占总量的比率:

Cars Y and Z travel side by side at the same rate of speed along parallel roads as shown above. When car Y reaches point P, it forks to the left at angle x, changes speed, and continues to stay even with car Z as shown by the dotted line. The speed of car Y beyond point P is what percent of the speed of car Z?

- (1) the speed of car Z is 50 miles per hour.
- (2) x=45
- 64. One-fifth of the light switches produced by a certain factory are defective. Fourfifths of the defective switches are rejected and 1/20 of the nondefective switches are rejected by mistake. If all the switches not rejected are sold, what percent of the switches sold by the factory are defective?
 (A) 4% (B) 5% (C) 6. 25% (D) 11% (E) 16%

$$\frac{4}{5}\left(1-\frac{1}{20}\right) = \frac{19}{25}$$

则出售的开关中有缺陷的开关所占的比例 为:

$$\frac{\frac{1}{25}}{\frac{1}{25} + \frac{19}{25}} = \frac{1}{20} = 5\%$$

- 65. 从某一产业中得到的\$200,000 美元的金额被分给一个配偶和3个孩子,问最小的孩子得到了多少钱?
 - (1) 配偶获得了 $\frac{1}{2}$ 的产业,而最大的孩子 得到了剩余部分的 $\frac{1}{4}$;
 - (2)两个较小孩子中的每一个都比最大的孩子多得了\$12,500,但比配偶少得\$62,500。
- 解:本题的正确答案为(B)。(1)不充分,因为 根据(1)无法求出最小的孩子获得多少钱;
 (2)充分,设两个较小的孩子得到的钱为 x,根据题意可以列出下面的方程,从而 求出 x的值:
 2x+(x-12500)+(x+62500)=200000

 $\Rightarrow x =$ \$ 37,500

- 66. 若土豆的价格是每磅 0.20 美元,问1美元最多可以买多少个土豆?
 (1)一袋土豆的价格是 2.8 美元;
 (2)每5磅土豆有15到18个。
- 解:本题的正确答案为(B)。因为不知道1袋 土豆有多少个,所以无法求出1美元能买 多少个土豆,因此(1)不充分;1美元可以 买5磅土豆,根据(2)可得每5磅土豆有 15到18个,所以1美元最多可以买18个 土豆,因此(2)是充分的。
- **67.** 若油罐 X 中仅含有汽油, 问油罐 X 中含有 多少千升的汽油?

(1) 若抽出油罐 X 中的油的 $\frac{1}{2}$, 则油罐 X

65. A sum of \$200,000 from a certain estate was divided among a spouse and three children. How much of the estate did the youngest child receive?

- (1) The spouse received $\frac{1}{2}$ of the sum from the estate, and the oldest child received of $\frac{1}{4}$ the remainder.
- (2) Each of the two younger children received \$12,500 more than the oldest child and \$62,500 less than the spouse.

- **66.** If the price of potatoes is \$0. 20 per pound, what is the maximum number of potatoes that can be bought for \$1.00?
 - The price of a bag of potatoes is \$2.80.
 - (2) There are 15 to 18 potatoes in every 5 pounds.
- **67.** If tank X contains only gasoline, how many kiloliters of gasoline are in tank X?
 - (1) If $\frac{1}{2}$ of the gasoline in tank X were

pumped out the tank would be filled

to $\frac{1}{3}$ of its capacity.

(2) If 0. 75 kiloliter of gasoline were pumped into tank X, it would be filled to capacity.

- **68.** At a certain state university last term, there were *p* students each of whom paid either the full tuition of *x* dollars or half the full tuition. What percent of the tuition paid by the *p* students last term was tuition from students who paid the full tuition?
 - Of the p students, 20 percent paid the full tuition.
 - (2) The p students paid a total of \$91.2 million for tuition last term.

69. Last year the annual premium on a certain hospitalization insurance policy was \$408, and the policy paid 80 percent of any hospital expenses incurred. If the amount paid by the insurance policy last year was equal to the annual premium plus the amount of hospital expenses not paid by the policy, what was the total amount of

中的油将是其容量的 $\frac{1}{2}$;

- (2)若向油罐中加入 0.75 千升的汽油,油 罐就会充满。
- 解:本题的正确答案为(C)。很明显,(1)和 (2)单独都不充分。设油罐 X 的容量为 a 千升,则根据(1)可得油罐 X 中的汽油为 其容量的 $\frac{2}{3}$,即为 $\frac{2}{3}$ a千升;再根据(2)可 知 0.75 千升的汽油占油罐容量的 $\frac{1}{3}$,从 而可得出油罐中的汽油是 0.75 的 2 倍, 即为 1.5 千升,所以(1)+(2)充分。
- 68. 在上一学期,某一州立大学的 p个学生, 或者付 x 美元的全额学费或者付半额学费。付全额学费的学生所付的学费占这 p 个学生所付的学费中的百分比是多少?
 - (1) 在这 p个学生中, 20%的人付全额学费;
 - (2) 这 p个学生上学期共付了 91.2×10²
 美元的学费。
- 解:本题的正确答案为(A)。(1)充分,因为由 (1)中付全额学费的学生有20%,可以推 知付全额学费的学生所付的学费所占的百 分比为:

$$\frac{20\% x}{20\% x + 80\% \cdot \frac{1}{2}x} = \frac{1}{3}$$

(2)不充分,因为从学费的总量中无法得出付全额学费的学生所付的学费在总学费中占的比例方面的信息。

- 69. 去年,某一医院保险政策的年保险费是 408美元,且该保险政策付给医院的钱是 其所有应当承担的医疗费用的80%。若该 保险政策去年所付的钱是年保险费和保险 政策未付的医疗费用的和,那么去年的医 疗费用是多少?
- 解:本题的正确答案为(B)。做对此题的关键 是读懂题目,设去年的医疗费用为 x美

hospital expenses last year?

(A) \$ 850.00	(B) \$ 680.00
(C) \$ 640.00	(D) \$ 510.00
(E) \$ 326.40	

70. After 5 games, a rugby team had an average of 28 points per game. In order to increase the average by n points, how many points must be scored in a 6th game?

(A) n (B) 6n (C) 28n

- (D) 28 + n (E) 28 + 6n
- 71. In a retail store, the average (arithmetic mean) sale for month M was d dollars.Was the average (arithmetic mean) sale for month J at least 20 percent higher than that for month M?
 - For month M, total revenue from sales was \$3,500.
 - (2) For month J, total revenue from sales was \$6,000.

- 72. On July 1, 1982, Ms. Fox deposited \$10,000 in a new account at the annual interest rate of 12 percent compounded monthly. If no additional deposits or withdrawals were made and if interest was credited on the last day of each month, what was the amount of money in the account on September 1, 1982?
 - (A) \$10,200
 (B) \$10,201
 (C) \$11,100
 (D) \$12,100
 - (E) **\$**12,544

- 元,则根据题意可得: $408+x \times 20\% = x \cdot 80\%$ $\Rightarrow x = 680 美元$
- 70. 一橄榄球队在5场比赛后,每场平均得28 分。为了使平均分增加n分,该球队在第 6场比赛中必须得多少分?
- 解:本题的正确答案为(E)。设第6场比赛的 得分为 x,根据题意可得:

$$\frac{28 \times 5 + x}{6} = 28 + n$$
$$\Rightarrow x = 28 + 6n$$

- 71. 某一零售店 M 月的平均(算术平均)销售额是 d 美元。问 J 月的平均销售额至少比 M 月的高 20%吗?
 (1) M 月的销售总收入是 3,500 美元;
 (2) J 月的销售总收入是 6,000 美元。
- 解:本题的正确答案为(E)。很明显,(1)和
 (2)都不充分;有些考生会认为(1)+(2)
 充分,因为 6,000-3,500/(3,500)×100%>20%。
 但由于题目中并没有说明销售总收入与平均销售额之间的换算关系,所以不能根据
 销售总收入的数据来计算平均销售收入方面的问题,也就是说(1)+(2)也不充分。
- 72. Fox 女士于 1982 年 7 月 1 日在一个新账户 存了 10,000 美元,其*年利率*(annual interest rate)为 12%,且以月为单位计算复 利。若她既没有再向该帐户上存钱也没有 从该帐户上取钱并且利息在每个月的最后 一天加入该账户,则在 1982 年 9 月 1 日 该账户上有多少钱?
- 解:本题的正确答案为(B)由年利率为12%可 知其月利率为1%,因此两个月后此账户 上的钱为:

 $10,000(1+1\%)^2 = 10,201$

73. A cashier mentally reversed the digits of one customer's correct amount of change and thus gave the customer an incorrect amount of change. If the cash register contained 45 cents more than it should have as a result of this error, which of the following could have been the correct amount of change in cents?

(A) 14	(B) 45	(C) 54
(D) 65	(E) 83	

- 74. During a 3-year period, the profits of Company X changed by what percent from the second year to the third year?
 - The increase in profits of Company X from the first year to the second year was the same as the increase from the first year to the third year.
 - (2) For Company X, the profits for the first year were \$13,800 and the profits for the third year were \$15,900.

75. Erica has \$460 in 5-and 10-dollar bills only. If she has fewer 10-than 5-dollar bills, what is the <u>least</u> possible number of 5dollar bills she could have?

(A) 32	(B) 30	(C) 29
(D) 28	(E) 27	

- 73. 一个营业员糊涂地把应该找给一个顾客的 零钱的数字搞颠倒了,结果找给顾客的零 钱不正确。若因为这个错误而使现金登记 表中多出了45美分,下列哪一个可以是 以美分计的零钱的正确数目?
- 解:本题的正确答案为(E)。设正确零钱的十 位数为 m,个位数为 n,根据两个数字颠 倒了以至于多了 45 美分可得:

(10m+n) - (10n+m) = 45

m - n = 5

即十位数减个位数的值应为5,在五个选 项中只有(E)选项的83满足条件。

- **74.** 在三年期间,公司 X 的利润从第二年到第 三年改变了百分之多少?
 - (1) 公司 X 从第一年到第二年利润的增加 与从第一年到第三年利润的增加相同;
 - (2)公司X第一年的利润是13,800美元, 第三年的利润是15,900美元。
- 解:本题的正确答案为(A)。因为从第一年到 第三年利润的增加等于从第一年到第二 年利润的增加加上从第二年到第三年的利 润的增加,所以根据(1)可得公司 X 从第 二年到第三年利润的增加为 0,所以(1)充 分;根据(2)只能求出公司 X 从第一年到 第三年的利润的增加,而求不出第二年到 第三年的利润的增加,所以(2)不充分。
- 75. Erica 有 460 美元,这些钱仅有 5 美元和 10 美元两种票制。若她手中 10 美元的钞 票比 5 美元的钞票少,则她最少可能有多 少张 5 美元的钞票?
- 解:本题的正确答案为(A)。设 Erica 有 a 张 5
 美元的钞票, b 张 10 美元的钞票, 且 a>
 b,则根据题意可得:

 $5a+10b=460 \Rightarrow a+2b=92 \Rightarrow a=92-2b$ 由上式可知, a - 定为偶数, 所以(C)和(D)一定不对; 因为 a > b, 所以 3a > a+2b=92, 再根据 a 为整数可知 a - 定大于30, 所以(A)中的 32 是正确答案。

- 76. A 2-year certificate of deposit is purchased for k dollars. If the certificate earns interest at an annual rate of 6 percent compounded quarterly, which of the following represents the value, in dollars, of the certificate at the end of the 2 years?
 - (A) $(1.06)^2 k$ (B) $(1.06)^8 k$
 - (C) $(1.015)^2 k$ (D) $(1.015)^8 k$
 - (E) $(1.03)^4 k$
- 77. Town T has 20,000 residents, 60 percent of whom are female. What percent of the residents were born in Town T?
 - The number of female residents who were born in Town T is twice the number of male residents who were <u>not</u> born in Town T.
 - (2) The number of female residents who were <u>not</u> born in Town T is twice the number of male residents who were born in Town T.
- **78.** 149 people were aboard Flight 222 when it arrived at Los Angeles from New York City with Chicago as the only intermediate stop. How many people first boarded the flight in Chicago?
 - 170 people were aboard the flight when it left New York City.
 - (2) 23 people from the flight deplaned in Chicago and did not reboard.

- 76. 用 k美元购买了一个为期两年的定期存折 (certificate)。若该存折的年利率为 6%, 并以季度复利(compounded quarterly)得 到利息,下列哪一个是这个定期存款单在 两年末所代表的美元价值?
- 解:本题的正确答案为(D)。certificate of deposit 简称 CD,是美国金融市场上可流通的一种金融产品,用 k 美元购买,是指这个定期存款单上有 k 美元,因为季度复利,所以每季度的利率为 6%÷4=1.5%,而两年有 8 个季度,所以两年末这张存款单上的价值为 k(1.015)⁸ 美元。
- **77.** T镇有2万名居民,其中60%是女性,出 生于T镇的居民的百分比是多少?
 - (1) 出生于 T 镇的女性居民的数目是不在 T 镇出生的男性居民数目的 2 倍;
 - (2) 不在 T 镇出生的女性居民的数目是出 生于 T 镇的女性居民数目的 2 倍。
- 解:本题的正确答案为(C)。(1)不充分:设出 生于T镇的女性居民的百分比为 x,出生 于T镇的男性居民的百分比为 y,根据 (1)可得 x=2(40%-y),但由此式无法 得到 x+y的值;根据(2)只能得到 2y+y=60%,并解得 y=20%,但无法求得 x; (1)+(2)可以得到 x的值,从而可以得到 x+y的值,所以(1)+(2)充分。
- 78. 当从纽约起飞的 222 航班到达洛杉机时, 机上有 149 人,芝加哥是它惟一在中途停 的站。问最初在芝加哥上飞机的人有多少 个?

(1) 当该机离开纽约时,飞机上有170人;

- (2) 有 23 个在芝加哥下了飞机,且没再返回。
- 解:本题的正确答案为(C)。(1)不充分,因 为不知道飞机在芝加哥停的时候,下了 多少人,所以也就无法判断又上了多少 人;(2)也不充分,因为不知道当飞机离 开纽约时,飞机上有多少人,所以无法

- 79. The participants in a race consisted of 3 teams with 3 runners on each team. A team was awarded 6 n points if one of its runners finished in nth place, where 1≤n ≤5. If all of the runners finished the race and if there were no ties, was each team awarded at least one point?
 - No team was awarded more than a total of 6 points.
 - (2) No pair of teammates finished in consecutive places among the top five places.

- 80. Amy's graduate seminar in history meets once each week, on Thursday afternoons. If it met every Thursday in the month of May, how many times did the seminar meet that month?
 - (1) There were five Wednesdays in the month.
 - (2) The seventeenth of May was a Friday.

判断飞机在芝加哥停的时候上了多少人; (1)+(2)充分,设最初在芝加哥上飞机 的人有x个,则根据题意可得:170+x-23=149 \Rightarrow x=2。

- 79. 一比赛由 3 个队参加,每队有 3 名赛跑者。若某队中的一名赛跑者得了第 n 名(1 ≤ n≤5),则该队得 6-n分。假如所有的赛跑者都完成了比赛并且名次没有并列的,那么每组至少都得 1 分吗?
 - (1) 没有一个队的得分超过 6;
 - (2) 在前 5 名中没有同队的成员获得连续 名次。
- 解:本题的正确答案为(A)。根据题意可知,前5名分别得5,4,3,2和1分,总分为15分。(1)充分,三个队中没有一个队超过6分,而总分又为15分,所以其结果一定是这三个队中的每个队都得了5分;(2)不充分,因为在满足题中条件的情况下,很容易使这三个队中的每一个队都至少得到1分,但另一方面当第一个队中的成员获得第1,第3和第5名,第二队的成员获得第2和4名时,第三个队则1分也没有得到。
- 80. Amy的历史研讨毕业会在每周四的下午开会一次。若它在五月的每个星期四开会,问该研讨会在这个月开几次会?
 (1)在这个月有5个星期3
 (2)5月17号是星期五
- 解:本题的正确答案为(B)。(1)不充分,因为 当第五个星期三是5月31号时,这个月将 只有4个星期四,也就是说共能开四次会, 但若当这个月的第五个星期三不是5月的 最后一天时,这个月将有5个星期四,所 以要开5次会,因此(1)不充分;根据(2) 中的5月17号是星期五,可以得知这个月 的第一个星期五是3号,最后一个星期五 是31号,因此可以推出这个月的第一个星 期四是5月2号,最后一个星期四是5月
30号,也就是说这个月共有5个星期四, 所以这个月开会5次,因此(2)充分。

81. If money is invested at r percent interest, compounded annually, the amount of the investment will double in approximately ⁷⁰/_r years. If Pat's parents invested \$5,000 in a long-term ond that pays 8 percent interest, compounded annually, what will be the approximate total amount of the investment 18 years later, when Pat is ready for college?
(A) \$20,000

(A) \$20,000	(B) \$ 15,000
(C) \$ 12,000	(D) \$ 10,000
(E) \$ 9,000	

- 82. Last year Luis invested x dollars for one year, half at 8 percent simple annual interest and the other half at 12 percent simple annual interest. Now he wants to reinvest the x dollars for one year in the same two types of investments, but the lower rate has decreased, If the higher rate is unchanged, what fraction of the x dollars must be <u>reinvest</u> at the 12 percent rate so that the total interest earned from the xdollars will be the same for both years?
 - (1) The lower rate is now 6 percent.
 - (2) The total amount of interest earned from the two investments last year was \$3,000.

- 81. 若以百分之 r 的年复利 (compounded annual interest)投资,投资额将在大约⁷⁰/_r年内加倍。若 P 的父母以 8%的年复利投资 5,000 美元在长期债券上,那么当 18 年后 P 准备上大学时,投资总额大约是多少?
- 解:本题的正确答案为(A)。大多数考生会根据年复利的计算公式写出18年后的投资总额为5,000 (1+8%)¹⁸,但无法算出其具体值大约是多少。要正确解答本题,一定要恰当地应用题目中所给出的已知条件。根据本题第一句话的信息,以百分之r的年复利投资,则在<u>70</u>年投资加倍,可推知若以8%的年复利投资5,000 美元,则在<u>70</u>8年后投资加倍,即8.75年后,投资变为10,000 美元;同理再过8.75年,该笔投资将变为20,000 美元,即17.5年后,投资变为20,000 美元。因此18年后,投资大约为20,000 美元。
- 82. 去年 Luis 投资 x美元,时间为1年,其中 一半投资的年单利(simple annual interest) 为8%,另一半的年单利为12%。现在他 要重新投资 x美元,时间也为一年,且与 上面的两种投资方式相同,但是年单利较 低的利率已开始下降。若年单利较高的投 资的利率不变,x美元中的多大比例的钱 必须以12%的利率投资以致从 x美元中所 挣得的所有利息对两年来说是相同的?
 - (1) 较低的利率现在是6%;
 - (2) 去年从两种投资中所挣得的总利息为 3000 美元。
- 解:本题的正确答案为(A)。根据(1)可知较低的年单利率为6%,设总投资额为x, 12%的年单利率的投资所占的百分比为n,

则得到如下等式:

x
 2(8%+12%)=nx×12%+(x-nx)•6%
 由上面的方程,消去 x,可以解得 n的值,所以(1)能充分地回答上面的问题;根据
 (2)无法求出年单利为 12%的投资占总投资的百分比。

- 83. 两个孩子 Bob 和 Mary 都有存放他们做零 工所赚的钱的扑满(一种中间是空用来的 存放零钱的小瓷器)。在某一年,Bob 和 Mary 都在每个月的第一天向各自的扑满 中存入5美元。若这些存款是这一年中存 入扑满的仅有存款,问在12月31号, Bob 扑满中的钱比 Mary 扑满中的钱多吗? (假设扑满中的钱没有被取出)
 - (1) 在 3 月 15 号, Bob 扑满中的钱是 Mary扑满中的钱的 3 倍;
 - (2) 在 6 月 15 号, Bob 扑满中的钱是 Mary扑满中的钱的 2 倍。
- 解:本题的正确答案为(D)。因为两个人都在 每个月的同一时间向各自的扑满中加入相 同数目的钱,所以不管在哪一个月的几 号,只要一个人扑满中的钱比另一个人的 多,则在年未12月31号时,他的钱都一 定多。由以上分析可知(1)和(2)单独都能 充分说明在12月31号时,Bob扑满中的 钱比 Mary扑满中的钱多。
- 84. 一个家庭分期付款(down payment)买了一 套价值 400 美元的百科全书,首期付款为 75 美元,余款(balance)和利息(interest)在 23 个月中以每个月付 16 美元,且最后再 付 9 美元的方式还清,该家庭所付的利息 额是其借款的百分之几?
- 解:本题的正确答案为(D)。根据题意可知, 该家庭所付的余款和利息一共是: 23×16+9=377美元

因此利息为 377-(400-75)=52 美元

- 83. Two children, Bob and Mary, have piggy banks into which they deposit money earned from doing odd jobs. In a certain year, both Bob and Mary each deposited \$5 on the first of every month into their respective piggy banks. If these were the only deposits made into the piggy banks during the year, on December 31 does Bob have more money in his piggy bank than Mary has in her piggy bank? (Assume no withdrawals)
 - On March 15 Bob had three times as much money in his piggy bank as Mary had in hers.
 - (2) On June 15 Bob had twice as much money in his piggy bank as Mary had in hers.
- 84. A family made a down payment of \$75 and borrowed the balance on a set of encyclopedias that cost \$400. The balance with interest was paid in 23 monthly payments of \$16 each and a final payment of \$ 9. The amount of interest paid was what percent of the amount borrowed?

(A) 6%
(B) 12%
(C) 14%
(D) 16%
(E) 20%

利息与借款量的比= $\frac{52}{400-75}$ ×100%=16%

- 85. Sue is now 10 years younger than Jane. If in 5 years, Jane will be twice as old as Sue, how old will Sue be in 3 years?(A) 6 (B) 8 (C) 11(D) 14 (E) 18
- 86. The market value of a certain machine decreased by 30 percent of its purchase price each year. If the machine was purchased in 1982 for its market value of \$8,000, what was its market value two years later?

- (E) **\$**800
- 87. A shipment of banners contains banners of two different shapes, triangular and square, and two different colors, red and green. In a particular shipment 26% of the banners are square and 35% of the banners are red. If 60% of the red banners in the shipment are square, what is the ratio of red triangular banners to green triangular banners?

(A)
$$\frac{7}{50}$$
 (B) $\frac{3}{13}$ (C) $\frac{7}{30}$
(D) $\frac{13}{37}$ (E) $\frac{35}{26}$

- 85. Sue 现在比 Jane 年轻 10 岁。若 5 年以后, Jane 的年龄将是 Sue 的两倍,问 Sue 在 3 年以后是多少岁?
- 解:本题的正确答案为(B)。设 Sue 现在的年龄为 x,则 Jane 现在的年龄为 x+10,根据题意可得:
 2(x+5)=(x+10)+5⇒x=5岁,所以三年以后 Sue 将是 5+3=8岁。
- 86. 某一机器的市场价每年下降其购买价格的 30%,若该机器在1982年购买时的市场价格 为8000美元,问两年后其市场价格是多少?
- 解:本题的正确答案为(C)。由题意可知,该 机器每年价格的下降量是相同的,因此其 两年后的市场价格为 8000-2×8000× 30%=8000×0.4=3200 美元
- 87. 一批旗帜有两种不同的形状,三角形和正 方形,且有两种不同的颜色,红色和绿 色。在某一批特定的旗帜中,有26%是正 方形的,有35%是红色的。若红色旗帜中 有60%是正方形,则红色三角形旗帜与绿 色三角形旗帜的比是多少?
- 解:本题的正确答案为(C)。此题可以通过列 表的方法进行解答,如下所示:

旗帜	正方形	三角形	总数
红色	2 21%	3 14%	35 %
绿色	3 5%	④ 60%	① 65%
总数	26 %	① 74%	100 %

图中的黑体字是题目中的已知条件,总数当 然是100%,表格中的①,②,③,④表示 计算这些数据的先后顺序,其中②由60%乘 以35%得到,从表中很容易求出红色三角形 旗帜与绿色三角形旗帜的比是<u>14</u>=<u>7</u>30。

- 88. The inflation index for the year 1989 relative to the year 1970 was 3.56, indicating that, on the average, for each dollar spent in 1970 for goods, \$3.56 had to be spent for the same goods in 1989. If the price of a Model K mixer increased precisely according to the inflation index, what was the price of the mixer in 1970?
 - The price of the Model K mixer was \$102.40 more in 1989 than in 1970.
 - (2) The price of the Model K mixer was \$142.40 in 1989.
- 89. Laura borrowed \$240, interest free, from her parents to pay for her college education. If she pays back 2 1/2 percent of this amount quarterly, and has already paid \$42.00, for how many months has she been paying back her loan?
 (A) 6 (B) 7 (C) 19

(A) 0 (B) 7 (C) (D) 21 (E) 24

- **90.** If $\frac{1}{2}$ of the air in a tank is removed with each stroke of a vacuum pump, what fraction of the original amount of air has been removed after 4 strokes?
 - (A) $\frac{15}{16}$ (B) $\frac{7}{8}$ (C) $\frac{1}{4}$ (D) $\frac{1}{8}$ (E) $\frac{1}{16}$
- **91.** On a certain road, 10 percent of the motorists exceed the posted speed limit

- 88. 相对于 1970年, 1989年的通货膨胀 指数 (index)是 3.56,它表明:平均而言在 1970年花1美元买的东西在 1989年买相 同的东西要花 3.56美元。若K型搅拌器 价格的增加与通货膨胀指数的增加完全一 致,那么该搅拌器在 1970的价格是多少?
 - (1) K型搅拌器在 1989 年价格比在 1970 年的价格高 102.4 美元。
 - (2) 在 1989 年, K 型搅拌器的价格是 142.40 美元。
- 解:本题的正确答案为(D)。设该搅拌器在 1970年的价格为 x 美元,根据(1) x+ 102.4=3.56x可以求出 x=40 美元;根 据(2)得 x=142.40÷3.56=40 美元。
- 89. Laura 为上大学向她的父母借了 240 美元, 不计利息。若她每个季度偿还这个金额的 2 1/2%,且她已经还了 42 美元,那么她已 经开始偿还贷款多少个月了?
- 解:本题的正确答案为(D)。Laura 每季度偿还的钱为 240×2 1/2%=6 美元,她还了42 美元,所以她已经还了 42÷6=7 个季度,也就是 21 个月。
- 90. 若一真空泵每次抽出某一容器中1/2的空气,那么在抽4次后,该真空泵抽出的空气量与原始空气的比是多少?
 解:本题的正确答案为(A)。因为每次抽出容
 - 器中空气的 $\frac{1}{2}$,所以4次抽出的空气与原 始空气的比分别为 $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$,其和 为:

$$\frac{1}{2} \! + \! \frac{1}{4} \! + \! \frac{1}{8} \! + \! \frac{1}{16} \! = \! \frac{15}{16}$$

91. 在某一条路上,有10%的汽车司机超过标 定的速度限制,并收到一张超速罚单,但 and receive speeding tickets, but 20 percent of the motorists who exceed the posted speed limit do not receive speeding tickets. What percent of the motorists on that road exceed the posted speed limit?

(A)
$$10 \frac{1}{2}\%$$
 (B) $12 \frac{1}{2}\%$ (C) 15%
(D) 22% (E) 30%

- 92. At 9 a.m, a hiker was due south of pointP. What direction was point P from her position at noon?
 - (1) From 9 a. m until 11 a. m she walked due east at 2 miles per hour, and from 11 a. m until noon, she walked due north at 3 miles per hour.
 - (2) At noon, she is exactly 4.5 miles from point P.

93. Cars X and Y were traveling together on a straight road at a constant speed of 55 miles per hour when car X stopped for 5 minutes. If car Y continued to travel at 55 miles per hour, how many minutes from the time that car X resumed traveling did it take car X traveling at 60 miles per hour to catch up with car Y? (Assume that the time for car X to slow down and speed up was negligible.)

(A) 5 (B) 30 (C) 45

(D) 55 (E) 60

是在超速的汽车司机中有 20%的司机未接 到超速罚单,问在那条路上超速驾驶的司 机所占的百分比是多少?

解:本题的正确答案为(B)。根据题意可知在 超速的汽车司机中接到超速罚单的人占 80%,所以超速者所占总司机人数的百分 比为:

$$\frac{10\%}{80\%} \times 100\% = 12.5\%$$

- 92. 上午 9 点时,一个徒步旅行者在 P 点的正 南方。问正午时, P 点在她的哪个方向?
 - (1)从上午9点到上午11点,她以每小时 两英里的速度向正东行走,且从上午 11点后直到中午,她以每小时3英里 的速度向北行走;
 - (2) 在中午,她离 P 点的距离恰好为 4.5 英里。
 - 解:本题的正确答案为(E)。at noon 指正 午12点根据(1)可知此徒步旅行者向 东走了4英里后又向北走了3英里, 但因为不知道上午9点时其与P点的 距离,所以无法得到正午时她在P点 的哪个方向;由(2)正午时她距P点 4.5英里更无法得到其距P点的方向; (1)+(2)同样无法确定P点在该徒步 旅行者的哪个方向。
- 93. 当汽车 X 和汽车 Y 在一条直路上以每小时 55 英里的速度在一起匀速行使时,汽车 X 停了 5 分钟。若 Y 继续以每小时 55 英里的速度行驶,X 从开始重新行驶时起以每小时 60 英里的速度前进,则需经过多少分钟才能追上 Y?(假定汽车 X 在加速和减速上所花的时间可以忽略不计)
- 解:本题的正确答案为(D)。设X经过x分钟 后追上Y,根据题意可得:

$$(60-55) \times \frac{x}{60} = 55 \times \frac{5}{60}$$

⇒ $x = 55$ 分钟

94. In a certain flower shop, which stocks four types of flowers, there are 1/3 as many violets as carnation, and 1/2 as many tulips as violets. If there are equal numbers of roses and tulips, what percent of the flowers in the shop are carnations?
(A) 10%
(B) 33%
(C) 40%
(D) 50%
(E) 60%

95. A certain Social Security recipient will receive an annual benefit of \$12,000 provided he has annual earnings of \$9,360 or less, but the benefit will be reduced by \$1 for every \$3 of annual earnings over \$9,360. What amount of total annual earnings would result in a 50 percent reduction in the recipient's annual Social Security benefit? (Assume Social Security benefits are not counted as part of annual earnings.)

(A) \$ 15,360	(B) \$ 17,360
(C) \$ 18,000	(D) \$ 21,360
(E) \$ 27,360	

96.

- 94. 在某一花店中,有四种类型的花,其中紫 罗兰是康乃馨的1/3,郁金香是紫罗兰的 1/2。若玫瑰花的数量与郁金香的数量相同,那么该花店中有百分之多少的花是康 乃馨?
- 解:本题的正确答案为(E)。设该花店中的康 乃馨占总花数量的x%,则紫罗兰占总花 数量的 $\frac{x}{3}\%$,郁金香占总花数量的 $\frac{x}{6}\%$, 玫瑰花占总花数量的百分比也是 $\frac{x}{6}\%$,根 据题意可得:

 $x\% + \frac{x}{3}\% + \frac{x}{6}\% + \frac{x}{6}\% = 100\% \Rightarrow x\% = 60\%$

- 95. 当某一社会保障的接收者的年收入少于或 等于 9360 美元时,他每年将收到 12000 美元的补贴,但是当这个人的年收入超过 9360 美元时,年收入每超过 3 美元将从 12000 美元中减去 1 美元。这个人的年收 入是多少时将导致他只能获得年保障金的 一半?(假设社会保障的补贴不被计入年 收入)
- 解:本题的正确答案为(E)。设该接收者的年 收入为 x 美元时只能获得年保障金的一 半,根据题意可以得到如下方程:

 $\frac{x-9360}{3}$ =12000×(1-50%) ⇒ x=27360 美元

96. 在上面的图形中,点A,B,C,D和E 代表某一联盟的5支球队,该联盟中的每 支球队与其他的每支球队仅比赛一次。连 接每对点之间的线段表示两支相对应的球 队已经比赛过了。线段上的箭头指向失利 的队伍;没有箭头的线段表示该比赛以平 局结束。当所有的比赛都都结束后,下列 哪一个不可能是以平局结束的比赛所占的 百分比? In the diagram above, points A, B, C, D, and E represent the five teams in a certain league in which each team must play each of the other teams exactly once. The segments connecting pairs of points indicate that the two corresponding teams have already played their game. The arrows on the segments point to the teams that lost; the lack of an arrow on a segment indicates that the game ended in a tie. After all games have been played, which of the following could NOT be the percent of games played that ended in a tie?

(A) 10%	(B) 20 ^⁰ ∕₀	(C)	30%
(D) 40%	(E) 50%		

97. A car traveled 462 miles per tankful of gasoline on the highway and 336 miles per tankful of gasoline in the city. If the car traveled 6 fewer miles per gallon in the city than on the highway, how many miles per gallon did the car travel in the city?

(A) 14	(B) 16	(C) 21
(D) 22	(E) 27	

98. Kim bought a total of \$2.65 worth of postage stamps in four denominations. If she bought an equal number of 5-cent and 25-cent stamps and twice as many 10-cent stamps as 5-cent stamps, what is the <u>least</u> number of 1-cent stamps she could have bought?

(A)	5	(B)	10	(C)	15

(D) 20 (E) 25

解:本题的正确答案为(A)。根据题意可知5 支球队共进行 C。场比赛即10场比赛。由 图形可知,目前已进行了7场比赛,其中 有2场比赛是平局,则平局已经占了总比 赛数目至少20%的比例,所以10%不可 能是平局所占的百分比。

- 97. 一辆汽车在高速公路上旅行时每罐汽油行驶462英里,在城市内时每罐汽油行驶336英里。若每加仑汽油使该汽车在城市内比在高速公路上少行驶6英里,那么每加仑汽油可使该汽车在城市内行驶多少英里?
- 解:本题的正确答案为(B)。设每加仑汽油可 使该汽车在城市内行驶 x 英里,根据题意 可得到如下方程:

 $\frac{462}{x+6} = \frac{336}{x} \Rightarrow x = 16 \notin \mathbb{Z} / m \&$

- 98. Kim 共购买了价值为 2.65 美元的 4 种面 值(denominations)的邮票。若她购买的 5 美分的邮票和 25 美分的邮票的个数相同, 且 10 美分邮票的个数是 5 美分邮票的 2 倍,那么她最少得购买多少张 1 美分的邮 票?
- 解:本题的正确答案为(C)。设 Kim 购买了 m 张1美分的邮票,且购买了 n张5美分的 邮票,则她购买了 n张25美分的邮票和 2n张10美分的邮票,根据题意可得到下 面的方程:

- **99.** All of the tickets for two real estate seminars, F and G, were either purchased or given away, and the ratio of F tickets to G tickets was 2 to 1. Of the total number of F tickets and G tickets, what percentage was purchased?
 - The total number of F tickets and G tickets is 240.
 - (2) Of the F tickets, exactly 60 percent were purchased, and of the G tickets, exactly 80 percent were purchased.

- 100. A store currently charges the same price for each towel that it sells. If the current price of each towel were to be increased by \$1, 10 fewer of the towels could be bought for \$120, excluding sales tax. What is the current price of each towel?
 - (A) \$1
 (B) \$2
 (C) \$3
 (D) \$4
 (E) \$12

101. A certain truck manufacturer must have sales of \$4.5 billion to break even this year. If the manufacturer had sales of \$1.0 billion for the first half of the

1. 9 billion for the first half of the

 $5n+25n+10 \times 2n+m=265$ $\Rightarrow m=265-50n$ 要使 y 最小, 就必须使 n 取最大值为 5, 得到 m=15

- 99. 房地产研讨会有 F 和 G 两种票,所有这些 票要么被购买要么被赠送,且 F 票与 G 票 的比率是 2:1。F 票和 G 票加在一起,总 共有百分之多少的票被购买?
 (1) F 票和 G 票的总数是 240 张
 (2) F 票中刚好有 60%的票被购买,G 票 中刚好有 80%的票被购买
- 解:本题的正确答案为(B)。根据(1)只能算出 F票和G票分别有160张和80张,但无 法求出他们总共有百分之多少的票被购 买;设G票为 x张,则 F 票为2x张,根 据(2)可得 F 票和G 票合在一起时被购买 的百分比为;

$$\frac{60\% \times 2x + 80\% \times x}{2x + x} = 66.7\%$$

所以(2)充分。

- 100.目前,一个商店以相同的价格出售毛巾。 若此时每条毛巾的价格上涨1美元,则 120美元可以买的毛巾数目将会减少10 条,不包括销售税。问目前每条毛巾的 价格是多少?
- 解:本题的正确答案为(C)。做对本题的关键 是对后半句"10 fewer of the towels could be bought for \$120"的理解,该句 用的是虚拟语气,意为"120美元可以购 买的毛巾数量少10条"。设目前每条毛 巾的价格为 x美元,则由题意可列出以 下方程:

$$\frac{120}{x} - 10 = \frac{120}{x+1} \Rightarrow x = 3$$
美元

101. 今年某一汽车制造商必须达到 45 亿美元 的销售额,才能收支平衡。若该制造商 在上半年的销售额为 19 亿美元,那么他 下半年的销售额必须比上半年高出百分 year, then, to break even for the year. its sales for the second half must be approximately what percent higher than its sales for the first half?

(A) 11%	(B) 16 [%]	(C)	27%
(D) 37%	(E) 58%		

- 102. A certain clock marks every hour by striking a number of times equal to the hour and the time required for a stroke is exactly equal to the time interval between strokes. At 6 : 00 the time lapse between the beginning of the first stroke and the end of the last stroke is 22 seconds. At 12 : 00, how many seconds elapse between the beginning of the first stroke and the end of the last stroke?
 - (A) 72 (B) 50 (C) 48
 - (D) 46 (E) 44
- 103. Last week a production worker had gross earnings of \$ 390.00. If she worked more than 40 hours last week and was paid 1.5 times her regular hourly rate for each hour worked in excess of 40 hours, how many hours did she work last week?
 - If she had worked 4 more hours last week, her gross earnings would have been \$435.00.
 - (2) Her regular hourly rate last week was\$7.50.

之多少,才能使这一年的收支达到平衡? :本题的正确答案为(D)。根据题意可得他

解:本题的正确答案为(D)。根据题意可得他 在下半年的销售额应为45-19=26亿美 元,所以比上半年高出的百分比为:

 $\frac{26\!-\!19}{19}\!\times\!100\,\%\!\approx\!37\,\%$

- 102. 某一钟表在整点时敲击的次数等于那一时刻的钟点数,一次敲击所持续的时间等于两次敲击之间的时间间隔。在6:00时,第一次敲击与最后一次敲击之间所间隔的时间为22秒。问在中午12:00时,第一次敲击和最后一次敲击之间的间隔是多少秒?
- 解:本题的正确答案为(D)。由题意可知敲击 持续的时间与两次敲击之间的间隔时间 相同,设该时间为 x 秒,注意到间隔的 次数比敲击的次数少1次,则6:00该 钟表共敲击6次,间隔为5次,由题意 可得到 F 面的方程:(6+5)x=22⇒x=2 因此12:00时的敲击与间隔时间共为 (12+11)×2=46 秒
- 103. 上星期一个生产工人的毛收入是 390.00 美元。若她上周工作超过 40 小时,且 40 小时以外每小时的工资是通常的 1.5 倍, 问她上周工作了多少小时?
 - (1) 若她上周多工作 4 小时,则她的毛收 入将会是 435.00 美元;
 - (2) 她上周每小时的正常工资是 7.5 美元。
- 解:本题的正确答案为(D)。由(1)可得,她 多工作4小时时,平均每小时的工资为 (435-390)÷4=11.25美元/小时,则 她正常工资是11.25÷1.5=7.5美元/小 时。设她上周工作了 x小时,根据题意 可得(x-40)×11.25=390-300⇒x= 48小时,所以(1)是充分的;根据(2)可 得她一周工作的时间 x 为:(40×7.5)+ (x-40)×7.5×1.5=390⇒x=48小时, 所以(2)也是充分的。

104. Salesperson A's compensation for any week is \$360 plus 6 percent of the portion of A's total sales above \$1,000 for that week. Salesperson B's compensation for any week is 8 percent of B's total sales for that week. For what amount of total weekly sales would both salespeople earn the same compensation?

(A) \$21,000 (B) \$18,000

(C) \$15,000 (D) \$4,500

- (E) **\$**4,000
- 105. How many gallons of water must be mixed with 1 gallon of a 15-percent salt solution to obtain a 10-percent salt solution?

(A) 0.50	(B) 0.67	(C) 1.00
(D) 1.50	(E) 2.00	

106. The ratio, by volume, of soap to alcohol to water in a certain solution is 2 : 50 : 100. The solution will be altered so that the ratio of soap to alcohol is doubled while the ratio of soap to water is halved. If the altered solution will contain 100 cubic centimeters of alcohol, how many cubic centimeters of water will it contain?

(A) 50	(B) 200	(C) 400
(D) 625	(E) 800	

107. In a certain animal population, for each of the first 3 months of life, the probability that an animal will die during that month is <a><u>1</u>
<u>1</u>
<u>1</u>
<u>1</u>
<u>1</u>
<u>1</u>
<u>10</u>
For a group of 200 newborn members of the population, approximately how many would be expected to survive the first

- 104. 售货员 A 任一周的酬金是 360 美元加上 那一周高于总销售额 1,000 美元的那一 部分的 6%,售货员 B 任一周的酬金是那 一周总销售额的 8%。当周销售额为多少 时这两个售货员所挣得的酬金相同?
- 解:本题的正确答案为(C)。设周销售额为 x
 美元时A和B两人的酬金相同,由题意
 可得:

360+(x-1000)×6%=x×8% 解此方程可得 x=15000 美元

- **105.** 1 加仑浓度为 15%的盐溶液必须加入多少 加仑的水才能获得浓度为 10%的盐溶液?
- 解:本题的正确答案为(A)。设必须加入 x
 加仑的水,根据题意可得:
 (1+x)×10%=1×15%⇒x=0.5
- 106. 在某一溶液中,肥皂、酒精与水的体积 比为2:50:100。改变该溶液的成份以 使肥皂与酒精的体积比加倍,同时使肥 皂与水的体积比减半。若改变后的溶液 中含有 100 立方厘米(cubic centimeter) 的酒精,那么它含的水是多少立方厘米?
- 解:本题的正确答案为(E)。根据肥皂和酒 精比率加倍,而肥皂与水的比率减半可 得改变后的溶液中肥皂、酒精与水体积 比为4:50:400。而酒精的体积等于100 立方厘米,所以水的体积为100×8= 800立方厘米。
- 107. 某种动物在出生后前 3 个月中的每个月 死亡的概率都是<u>1</u>0。在 200 个该种动物 的新生成员中,预计大约有多少个可以 在前 3 个月中存活下来?
- 解:本题的正确答案为(B)。因在前3个月中 每个月的死亡概率都为0.1,所以出生
 一个月后生存下来200(1-0.1)个;同

3 months of life?

(A) 140	(B) 146	(C) 152
(D) 162	(E) 170	

- 108. If Mark saved an average (arithmetic mean) of \$80 per week for 3 consecutive weeks, how much did he save the second week?
 - The average amount that Mark saved per week for the first 2 weeks was \$60.
 - (2) The amount that Mark saved the first week was $\frac{1}{2}$ the amount he saved the second week and $\frac{1}{3}$ the amount he saved the third week.

- 109. Over the last three years a scientist had an average (arithmetic mean) yearly income of \$45,000. The scientist earned 1 $\frac{1}{2}$ times as much the second year as the
 - first year and $2\frac{1}{2}$ times as much the third year as the first year. What was the scientist's income the second year?
 - (A) **\$**9,000 (B) **\$**13,500
 - (C) \$27,000 (D) \$40,500
 - (E) **\$**45,000
- 110. A wildlife preserve is being planned for 3,000 rhinoceroses. The preserve is to contain a total of 10,000 acres of watering area, plus 100 acres of grazing area for each rhinoceros. If the

理出生两个月后存活下来 200(1-0.1)², 第三个月为 200(1-0.1)³=146 个。

- **108.** 若 Mark 在连续 3 周中平均每周存 80 美元,问他在第二周存多少钱?
 - (1) 在前两周, Mark 平均每周存 60 美元;
 - (2) Mark 在第一周存的钱是他第二周存 的钱的 $\frac{1}{2}$,是他第三周存的钱的 $\frac{1}{3}$ 。
- 解:本题的正确答案为(B)。(1)中指 Mark 在前两周中平均每周存 60 美元,但无法 确定第一、二周分别存多少钱;(2)中指 出第一周存的钱等于第二周存的钱的<u>1</u>, 等于第三周存的钱的<u>1</u>,设第一周存的 钱为 x,由题意可得到下面的式子: $\frac{x+2x+3x}{3}=80\Rightarrow x=40, 2x=80$ 也即 Mark 第二周存了**\$**80。
- 109. 在过去的三年中一科学家的年平均(算术 平均)收入是 45,000 美元。这位科学家 第二年的收入是他第一年的收入的 1 $\frac{1}{2}$ 倍,且第三年的收入是第一年的 2 $\frac{1}{2}$ 倍。 问这位科学家第二年的收入是多少? 解:本题的正确答案为(D)。设这位科学家 第一年的收入为 x 美元,根据题意可得: $x+1\frac{1}{2}x+2\frac{1}{2}x=45,000\times3 \Rightarrow x=27,000$ 所以他第二年的收入为 27,000×1 $\frac{1}{2}=$ 40,500 美元
- 110. 一野生动物保护区计划保护 3000 头犀 牛。该保护区除包含有 10000 英亩的水 域外,还有平均每头犀牛 100 英亩的放 牧区。若犀牛的数目预计增加 10%,该 保护区需要多少千亩的土地来供养数目

number of rhinoceroses is expected to increase by 10 percent, how many thousand acres should the preserve have in order to provide for the increased population?

(A) 340	(B) 330	(C) 320
(D) 310	(E) 300	

- 111. Car X and car Y ran a 500-kilometer race, what was the average speed of car X?
 - (1) Car X completed the race in 6 hours and 40 minutes.
 - (2) Car Y, at an average speed of 100 kilometers per hour, completed the race 1 hour and 40 minutes before car X crossed the finish line.

- 112. How many minutes long is time period X?
 - (1) Time period X is 3 hours-long.
 - (2) Time period X starts at 11 p.m. and ends at 2 a.m.
- 113. In a refinery, the capacity of oil tank A is 70 per cent of the capacity of oil tank B. How many more gallons of oil are in tank A than in tank B?
 - Tank A is 90 percent full; tank B is 50 percent full.

增加后的犀牛?

解:本题的正确答案为(A)。正确解答该题 的关键是对题意的确切理解。题目中的 "a total of"指水域面积是不变的,不会 随犀牛数量的增加而增加, each 指每增 加一头犀牛所需的草地, the increased population 指增加后的犀牛数目,由以 上分析可得:

> $10000 + 100 \times 3000(1 + 10\%)$ = 340000 = 340 thousand

- 111. 汽车 X 和汽车 Y 参加一个 500 公里的比赛,问汽车 X 的平均速度是多少?
 - (1) 汽车 X 在 6 小时 40 分钟完成了比赛。
 - (2)汽车Y以平均每小时100公里的速度在汽车X到达终点前1小时40分钟到达了终点。
- 解:本题的正确答案为(D)。根据(1)可求出汽 车 X 的平均速度为 500÷6 $\frac{2}{3}$ =75 公里/ 小时,所以(1)充分,根据(2)可得汽车 X 所用的时间为 500÷100+1 $\frac{2}{3}$ =6 $\frac{2}{3}$ 小 时,从而也可求出汽车 X 的平均速度是 75 公里/小时,所以(2)也是充分的。

112. 时间段 X 有多少分钟?

- 解:本题的正确答案为(A)。由(1)可知时间 段 X 中有 180 分钟,所以(1)是充分的; 而(2)中因并未指明时间段 X 是从那一天 开始,又到那一天结束,所以无法确定时 间段 X 中的多少分钟,也即(2)不充分。
- 113. 在一个炼油厂,油罐 A 的容积是油罐 B 的容积的 70%。问油罐 A 中油比油罐 B 中的油多多少加仑?
 - (1)油罐 A 中的油是其容量的 90%,油罐 B 中的油是其容量的 50%。
 - (2) 油罐 A 充满时,含油 50,000 加仑。

(2) When full, tank A contains 50,000 gallons of oil.

114. Diana bought a stereo for \$530, which was the retail price plus a 6 percent sales tax. How much money could she have saved if she had bought the stereo at the same retail price in a neighboring state where she would have paid a sales tax of 5 percent?

(A) \$ 1.00	(B) \$ 2.65
(C) \$ 4.30	(D) \$ 5.00
(E) \$ 5.30	

115. A certain ball was dropped from a window 8 meters above a sidewalk. On each bounce it rose straight up exactly one-half the distance of the previous fall. After the third bounce the ball was caught when it reached a height of exactly 1 meter above the sidewalk. How many meters did the ball travel in all?

(A) 21	(B) 19	(C) 17
(D) 15	(E) 13	

- 解:本题的正确答案为(C)。设油罐 B 的容量为 a,则根据(1)可得油罐 A 中的油量为 90%×70%×a=63%a,而油罐 B 中的油量为 50%a,因为从(1)中只能得出油罐 A 中的油比油罐 B 中的油多,但究竟多多少加仑却不得而知,所以(1)不充分;根据(2)可求出油罐 B 的容量为50,000÷70%加仑,但因为不知道两个油罐中究竟装了多少油,所以无法对两个油罐中的油的多少进行对比,所以(2)不充分;由以上分析可知,(1)+(2)充分,此时油罐 A 比油罐 B 多的油为:50,000÷70%×(63%-50%)=9285 加仑
- 114. Diana 买一个音响花了\$530,等于零售价 与6%购物税的和。若她在购物税是5% 的邻近州以相同的零售价买这种音响, 她可以节省多少钱?
- 解:本题的正确答案是(D)。设该音响的零 售价为 x,则由题意可得:

$$x(1+6\%) = 530 \Rightarrow x = \frac{530}{1.06}$$

因此 Diana 可节省的钱为: $530 - \frac{530}{1.06}(1+5\%)$ $= \frac{530 \times 1.06 - 530 \times 1.05}{1.06} = \frac{5.3}{1.06} = 5$

- 115. 某个球从人行道上空 8 米高的窗户处落下。每一次反弹它都垂直升起,且高度等于上一次下落高度的一半。在第三次反弹后,球在恰好高出人行道 1 米的高度被抓住,问该球共走了多少米?
- 解:本题的正确答案为(A)。该球从窗户上落 下共8米,而第一次反弹的高度为4米, 来回共8米,第二次反弹的高度为2米, 来回共4米,第三次反弹的高度为1米, 球在达到第三次反弹的最高点时被抓住, 所以该球共走了:

 $8+4\times2+2\times2+1=21$ #.

第三篇

GMAT 数学思维训练 150 题

- 1. 一个三位数的百位数是多少?
 - (1) 该三位数加上 150 后所得新数的百位数 是 4
 - (2) 该三位数加上 150 后所得新数的十位数是 5
- 已知某直线斜率为 2,其代表方程式为 ky +2x=6,求 k的值?
- 某百货商店的一种商品营业额为商品的售 价乘以该商品的销售量。商品在促销期售 价比上个月下降10%,该月销售量较上月 增10%。问:促销月营业额较上月变化幅 度。
 - (A) 上升 10%
 - (B) 上升 1%
 - (C)下降10%
 - (D) 下降1%
 - (E) 没升也没降
- 已知某数列中共有7个数,其中数(median) 为100,值域(range)为50。其中最小的三个 数的中数为70,问最大的三个数的值域 (range)可能是多少?
 - I.0 II.20 III.40
 - (A) 只有 I
 - (B) 只有Ⅱ
 - (C) I 和Ⅱ
 - (D) Ⅱ和Ⅲ
 - (E) Ⅰ, Ⅱ和Ⅲ

- 5. 有 10 个数,其中 7 个数相同,问这 10 个数的算术平均数是否大于他们的中数?
 (1)另 3 个数中每一个都大于这 7 个数。
 (2)另 3 个数的算术平均数(average)为这 7 个数的算术平均数(average)。
- 6. P为 627 的倍数,且 P个位为 4,Q=
 627,
 问 Q个位为几?
- 7. p=xy, p为质数,问 x+y不可能为下列 哪一项?
 (A) 3 (B) 4 (C) 6
 (D) 10 (E) 12
- A事件发生概率为 0.6, B事件发生概率为 0.5, 问 A, B都不发生的最大概率?

9.
$$\left(\frac{2}{3}\right)^{99}$$
约等于几?
(A) -1 (B) $-\frac{1}{2}$ (C) 0
(D) $\frac{1}{2}$ (E) 1

- 10. *j*, *k* 均为正整数(positive integer), 问 *j* 和 *k* 的最大公约数(greatest common divisor)是多少?
 (1) *j*=*k*+1
 - (2) jk is divisible by 5

224

11. 已知 AB= BC= CD= DE, 且 AE=10, 求 AB的值。

- 12. 某批商品样式分A和B两种,形状有大小 两种,大的占40%,问B所占的比例是多 少?
 - (1) 大中有 30% A
 - (2) 小中有 40% A
- 13.

r	S	t
u	W	x
υ	У	z

已知上面表格的每一行和每一列中,1,

- 2,3出现且只出现一次,r=?
- (1) w + z = 6
- (2) s+t+u+v=6
- 14. 5 双不同颜色的袜子,任取两只,求其恰 好是一对的概率?
- **15.** 10⁵⁰ 74 的各位数字相加为几?
- 16.3对人分为A,B,C三组,每组两个人, 考虑组与组的顺序及每组中人的顺序,问 有多少种分法?
- 17. 已知 ABCD 为四边形,边长 AB=12, DA
 =5,问: ABCD 是否为矩形?
 (1) 对角线 DB=13
 - (2) AB = DC, $\square AD = BC$
- **18.** X+2Y=16, X, Y为自然数,问 X=?

- (1) X > Y(2) X > 4, Y > 4
- 19. 有 3 个考官测试 30 个学生,考官 1 认为 有 15 个通过,考官 2 认为有 7 个通过, 考官 3 认为有 24 个通过,且只有 3 个考 官都认为通过才能算学生通过,问至少有 多少学生通过?
- 20. 4 对夫妇(couple),从中取 3 个人,组成 一小组,不能从任意一夫妇(couple)中取 2 个,问有多少种取法?
- **21.** 一对夫妇生孩子,每次仅生一个孩子,生 男生女的概率一样,问生2男2女的概率?
- 22. N个连续奇数的算术平均值(mean)为 10, 求最小数的值?
 (1)其值域(range)为 14
 (2)最大的数为 15
- 23. X, Y为正整数, X是否可被3整除?
 (1)(X-Y)可被3整除
 (2)(X-2Y)可被3整除
- 24. 两把钥匙(key),放到已有 5 个钥匙的钥 匙链(key chain)中,问这两把钥匙相邻的 概率?
- 25. 从 15 个人中取 5 个人 , 且有 3 个人不能 都取,问有多少种取法?
- 26. X+5, Y+5, Z+5的标准方差(standard deviation)是多少?
 (1) X, Y的标准方差大于 0.3。
 (2) X, Y, Z的标准方差等于 0.2。
- 27. 有 50 个人排队买票,每人至少1张,最 多 5 张,共买了 154 张票,问仅买1张票 的最多有多少人?

- 28. 红灯亮的时间为 40 秒,黄灯亮的时间为 5 秒,绿灯亮的时间为 45 秒,这些灯按绿, 黄,红的顺序闪,问 5 分钟内红灯亮的最 长时间是多少?
- 29. 从 1~100 中任意选 7 个数,问它们分别 除以 7 后所得的余数的和能被 7 整除吗?
 (1) 这 7 个数的值域(range)为 6。
 - (2) 这7个数是连续整数(consecutive in-teger)。
- 30. 有一组数是 0, 9, 5, X, Y, 其中 X, Y 是正数,问这组数的值域 (range) 是多少?
 (1) X+Y=9
 (2) X-Y=1
- 31. 20个人,17个人能干A工作,18个人能 干B工作,15个人能干两种工作,选一 个人,他既不能干A工作也不能干B工 作的概率是多少?
- **32.** 问 √*n*是否大于 100?
 - (1) $\sqrt{n+1} > 100$
 - (2) $\sqrt{n-1} < 99$.
- 33.问19个数的中数(median)?
 (1)最大的14个数都是9;
 (2)最大的4个数都大于8。
- 34. 从4个A,6个B从中挑取3个,且至少 有1个A,问共有多少种挑法?
- **35.** 一枚硬币(coin),若投一次正面朝上的概 率不是 0.5,则是多少?
 - 正面朝上的概率是正面朝下的概率的 两倍。
 - (2) 连续投两次,一次朝上一次朝下的概 率是 $\frac{4}{9}$ 。

- 36. 有 3 名打字员为 4 个科室服务,如果 4 个 科室各有一份文件要打,各科室打字员的 选择是随机的,问每个打字员都收到文件 的概率?
- 37. 从 0~6 这 7 个数中取 6 个各不相同的数 组成一个大于 300,000 的 6 位偶数,问可 组成多少个?
- **38.** $x^3 > y$? (1) $\sqrt{x} > y$ (2) x > y
- **39.** $x^3 x = (x a)(x b)(x c)$, $\square a > b > c$, $\square b = ?$
- **40.** 一个物体(mass)的¹/₈到¹/₇的部分在水面上,问其水上部分与水下部分比的值域 (range)是多少?
- 41. 共有 200 人,其中买 A 产品的有 50 人,买 B 产品的有 40 人,买 C 产品的有 75 人,买 D 产品的有 60 人,买 E 产品的有 85 人, 已知有 15 人既买了 A 产品又买了 B 产品, 求既没买 A 产品又没买 B 产品的人数?
- 42. X 是否满足 0<X<1?
 (1) X² < ³√X;
 (2) X³ < ³√X.
- 43. 直线 L 通过(1, q),问其斜率(slope)是否 大于 0?
 (1)该直线通过(q, 1)
 (2) 法支付 (1)
 - (2) 该直线通过(13, q)
- **44.** 若 L₁ 的斜率小于 0, 问其在 y 轴上的截距 (intercept)是否为正?
 - L1 过点(4, 5)
 - (2) 在 x 轴的 intercept 为正。

- 45. 有 17 个 人,从中抽出 3 个,分别住进 3 个屋子中,这 17 个人中有 7 个人只能在 某一屋子,而另 10 个人只能在另两个屋 子,问共有多少种取法?
- 46. 有两人为三个房间送餐,甲送饭,乙送菜,分为三个时间段去送,每时间段一个房间,且任一时间段内不可往同一房间送,问有多少种送法?
- 47. 有 2 个工作, 3 个人去做,可以有工作多人做,也可以有工作没人做,问有多少种分配方法?
- 48. S是一个数列(A₁, A₂, …, A_n),问数列
 S的标准方差是多少?
 (1)每个数相等。
 (2)该数列的算术平均数是 7。
- 49. 从数列 1, 2, 3, 4, 5, 6, 7, 8 中选出 不同的三个数组成一个三位数 ABC,中 间数只能是偶数,求能组成多少个三位 数?
- 50. TU是个两位数(T是十位数,U是个位数)。若 TU等于T与U的乘积的2倍, 那么U=?
- 51.每只老虎每天吃4.5磅肉,每只狮子每天吃3.5磅肉,动物园没有其他猫科动物,问动物园每只猫科动物平均每天吃多少磅肉?
 (1)老虎的个数是狮子的2倍。
 - (2) 狮子有4只。
- 52. 某一物体上升的高度(H)可由 H=-16 (t-3)(t-3)+150 来表示,求该物体达 到最高点 2 秒后的高度?
- 53. 下图为一圆,问此圆上点的坐标(x, y)均

- 54. 两个班 A 和 B 在某次考试中的分数如下表 所示:问当 A 和 B 两个班的学生合在一起 时,其学生考试分数的算术平均值是否大 于其中数?
 - (1) A 班有 37 人, B 班有 40 人。
 - (2) A 和 B 两个班共有 77 人

	median	average score
А	80	82
В	78	74

- 55. 有 400 个人, 387 个人的年龄不超过 20 岁, 14 个人的年龄不小于 20 岁, 求从中 任取一个, 其年龄小于 20 岁的概率?
- **56.** 从 6 个软皮本和 2 个硬皮本中任意抽取 4 本,问至少有一本是硬皮的可能数?
- 57. A 是一个从 101~550 (inclusive) 的整数 集合,求从 A 中任取一个数,该数以 1, 2,3 开头,4,5,6 结尾的概率?
- **58.** $1 + X + X^2 + X^3 + X^4 + X^5 < \frac{1}{1 X}$? (1) X > 0(2) X < 1
- **59.** N为1~99之间的整数,问满足 N(N+1)被3整除的 N的概率。
- 60. 求五角星的五个顶角之和。

- 61. 某一直角坐标系中,有 L₁ 和 L₂ 两条直线,问 L₂ 是否过 Ⅱ 象限?
 - (1) $L_1 \perp L_2$
 - (2) L₁ 过原点
- 62. 一直线 L 过点 A(5, 0), B(0, 2), 坐标 原点为 O, 点 P(x, y)为 OAB 中一点, 问 y≤x的概率为多少?
- 63. x²+x-6<0,问 x=?
 (1) x 是自然数
 (2) -2<x<2
- **64.** -3<*x*<1 等价于多少?
- 65. 在数列{7, 6, 9, 10, 4}中分别加入三个数: 3, 7, 12,问哪个可使新的数列的中数(median)等于它的算术平均数(mean)?
 I. 3 II. 7 III. 12
- 66. $A_1 = 2$, $A_2 = 3$, $A_3 = A_1A_2$, $A_4 = A_1A_2A_3$, ..., 若 $A_n = t$ ($n \ge 3$), 那么 $A_{n+2} = ?$
- 67. 5个人围着一个圆桌的 5 个位置坐,相对 位置相同的坐法算 1 种,问共有多少种不 同的坐法?
- **68.** 已知 A, B, C 均为圆上的点,问 O 是否为圆心?

- (1) AO = OB
- (2) AO = OC
- 69. 9个整数构成等差数列,问其中项为几?
 (1)头7个中间项为13
 (2)后7个中间项为17。
- 70. 问下列哪个点(r, s)在直线 y=2x+3 上?
 (1) (2r-s+3)(4r+2s-6)=0
 (2) (3r+2s-5)(2r-s+3)=0
- 71. *m* is a two digit number(两位数) and 2*m* is a three digit number(三位数), what is the unit digit(个位) of *m*?
 - (1) the unit number of 2m is 4
 - (2) the unit number of m is the same as the tens number(十位数) of 2m
- **72.** 扔两个骰子(1-6),求他们朝上的面上的 数值相加大于9的概率?
- 73. (x, y, z)的子集(subset)是 X, Y, Z, XY, XZ, YZ, XYZ; 问(W, X, Y, Z)的所有子集(subset)中有多少个含有W?
- 74. A, B是0到9之间的正整数, 且 A+B=
 14, 设 x=0. A, y=0. B, 问 x 乘以 y 的
 最大值是多少?
- 75. 已知整数 K前所有整数之和为K(K+1)/2,
 问 M和 N 之间(包含 M和 N)整数的和为 多少(M>N)?
- 76. 8 marbles in a bag, 4 red and 4 white. Randomly get 3 marbles out of the bag, what's the probability that at least 1 of the 3 marbles is red?

- 77. Somebody bought some pencils and rubbers in a shop. What's the price for each pencil?
 - (1) he paid 215 cents for 2 pencils and 3 rubbers
 - (2) he should have bought 8 pencils and12 rubbers if he paid 860 cents.
- 78. 两个三角形全等,面积比为1:2。小三角形一边长为A,大三角形类似的一条边为B,用A来表示B的长度。
- 79. 有 350 个人,不是研究生就是本科生,从中 任取一人,问是女研究生的概率为多少?
 (1)研究生有 187
 (2)女生有 247
- 80. 若一块含水的木头重 60 克,水重 30 克,则它的含水量为 100%。问一块含水量为 20%,重为 1200 克的木头中含有多少克的水?
- **81.** *n*=A×B×C×D, 且 A, B, C和 D均为大 于1的质数,问 *n*除了1之外有几个因子?
- **82.** 1, 2, 3, 6, 7, 8 构成两个数字不同的三 位数,问这两个数差的最小值(least possible difference)是多少?
- **83.** 已知 A 点落在上面的正方形内,问其落在 阴影部分的概率?

84. 某个数列的通项公式为 a_{n+2} = a_n + a_{n+1}
(n≥1),问 a₆ = ?
(1) a₆ - a₅ = 3

(2) $a_7 + a_8 = 34$

- 85. 一个数被 13 除时, 商是 k, 余数为 2; 被 17 除时余数为 2, 问 k 被 17 除余几?
- **86.** 求直线 *x*+2*y*=6 与 *x* 轴和 *y* 轴相交而成 的三角形的面积。
- 87. 从 0~9 这十个数中取出四个数组成电话 号码,其首位不能为零。问共能组成多少 个电话号码?
- 88. 一个单位给员工做胸牌。胸牌号码由 2~9 中的 3 个数组成,且不重复。已做了 330 个,问还可做多少个?
- 89. 一个班总共有 60 个学生,他们要么学习 西班牙语,要么学法语,或两者都学,学 西班牙语的有 36 人,其中包括 6 个两种 语言都学的人。问有多少人学法语?
- **90.** 一个圆上的7个点,能组成的三角形的数 目与能组成的四边形的数目之比。
- 91. 300个病人有 A, B, C 三种症状, 且每人 至少有一种症状, 其中有 A 症状的人占 35%, 有 B 症状的人占 45%, 有 C 症状 的人占 40%, 有且仅有两种症状的人占 10%, 问有多少人有且仅有一种症状?

92.6本书中有2本是历史书,6本书在书架 上直线排列,其中两本历史书要在其他书 的左侧的排法有多少种?

229

- 93. 袋中有四个球,分别为红、黄、蓝、绿四 个颜色,求任取出两个,其中有一个为蓝 球或绿球的概率?
- 94. 在一个有 200 人的小组中,选 P的有 125 人,选 S的有 80 人,求既不选 P也不选 S的人有多少?
 (1)选 S的人中有 50%的人选了 P
 (2)选 P的人中有 85 人没有选 S
- **95.** 从 X-Y, X+Y, X-5Y, X+5Y 中任选 两个,能组成 X² DY²(D为某一数值)的 概率是多少?
- 96. 在已有 5 个钥匙的钥匙环中放入两个钥匙,这两个钥匙相邻的概率?
- **97.** 抛币正反几率各半,问抛两次至少一次正面朝下的几率。
- **98.** a # b = a + b ab, 问下列等式哪个正确。
 - (1) a # b = b # a
 - (2) a # 0 = a
 - (3) (a # b) # c = a # (b # c)
- **99.** Z, X 是整数, 且绝对值>1, 问 Z 的 X 次方是否小于 1?
 - (1) X<0
 - (2) Z的 Z次方<1
- 100. 一台机器人每天工作 8 小时,共完成 65 件工作。其中能在 6 分钟内完成的工作 有 50 件,能在 12 分钟内完成的工作有 15 件。问在这 8 小时任选一时刻,这个 机器人正在操作能在 12 分钟内完成的工 作的概率是多少?
- 101.一组连续整数组成的数列,开头与结尾 两数都为偶数,且偶数共有7个。问从 中任选一数,其为奇数的概率是多少?

102. 从 7 个男生与 7 个女生中选 3 个男生与 3 个女生共有多少种组合?

.

103. 缺勤次数

J 3 .	缺勤次数	人数
	0	4
	1	3
	2	10
	3	3
	4	5
	5次以上	3

问有缺勤记录的人的缺勤次数的中数是多 少?(注意是有缺勤记录的人的中数)

- 104. 有 6 个公司,每个公司派 3 个人与其他 公司的人握手(不同本公司的人握),问 共握多少次手。
- 105. 有一个长方形内接在一个圆内,半径为 r,长方形不是正方形,问长方形的周长 L可能是多少。
- **106.** 有 6 个会计和一个 Controler 组成一个四人 小组,问 Controler 必然保存在组内的概率。
- 107.如下图所示,患有A病的人占57%,患有B病的人占47%,患有C病的人占43%,既患有A病又患有B病的人占30%,问最多有多少人只患有C病(总人数为100)?

- 108. R 与 S 两数满足 R² + S² = K,其中 K 为 一常数,问点(-2,2)是否满足此方程?
 (1) K=8
 (2) 点(2,-2)满足此方程
- 109. 已知 A₀ 等于 1, A₁ 等于 2, 其后各项通 式为 A_{N+1}=3(A_N-1)A_{N-1},问 A₅ 等于 多少?
- 110. X^{(X+Y)²}等于多少?
 (1) XY=6
 (2) X+Y=5
- 111. 从1,2,3,…9 中取出两个组成一个三 位数(其中两个数相同),问有多少种取 法?
- 112. X, Y, Z 是三角形的三个边, 且 X<Y
 <Z, S_△=1, 问 Y 的范围?
- **113.** X 是 5 的倍数, $X = p^2 q$, p = q 为整数, 下列哪个是 25 的倍数? (A) pq (B) pq^2 (C) $p^2 q^2$ (D) $p^3 q$
- 114. x+y为整数,y为整数吗?
 (1) x-y为整数;
 (2) x+2y为整数。
- 115. x, y, z为正整数,且 x<y<z,求 y? (1) x+y+z=6 (2) xyz=6
- 116. 300人至少参加一种体育活动,1/3的人参加游泳,2/3的人参加网球,3/10的人参加杂技,问多少人参加三项体育活动?
 (1)60人恰好参加2项活动;
 - (2) 35 人既参加游泳又参加网球。

- 117. 直线 A 与直线 B 斜率相同,直线 A 过点 (-1,0),求直线 B 的方程?
 (1) 直线 A 过点(0,-1)
 (2) 直线 B 过点(10,20)
- 118. 有 A 和 B 两个集合,其中 A 集合包含 20 个数,B 集合包含 30 个数。问 B 集合的 RANGE 是否小于 45?
 - (1) A 集合中数的值域(range)是 10
 - (2)如果把A,B集并起来,合并后的大 集的值域为40
- 119. The trip was 40 miles. The speed for the first y miles was x, and the speed for the remaining trip was 1. 2x. What is the average speed?
 - (1) x=12 miles per hour
 - (2) y=20 miles
- 120. 图上画出两根线段,相交于一点,求 这点的坐标。两根线段的另一头分别 为(0,0)和(5,3),线段1的斜率为 1/8,线段2的斜率为2/5。
- 121. 第一行的"O"表示一个小球。第2, 3,4行的"X"表示障碍物。第6行 的"凹"表示小凹槽。小球从上落下, 掉到第3行时受中间的障碍物阻滞时, 其向左或向右滑移的几率相等,各占 百分之五十。以下亦然。问最后小球 掉到第6行的第二个小凹槽的几率有 多大?

- 122. If for integers C, 6 < C < 20, what is the least possible value of the equation (20 -C)/(6-C)?
- 123. For integers a and b, if (a³ a² b)^{1/2}
 =7, what is the value of a ?
 (1) a² a=12
 (2) b² b=2
- 124. 五个数, x, y, z, 5 和 7, 他们的算 术平均值(mean)等于 8, 问下面哪一 个正确?
 - (I) The range of the five numbers is 2 or more.
 - (II) At least one of x, y, z is more than 9.
- 125. 一个公司的程序员的平均工资是 x,统 计员的平均工资是 y,问程序员与统计 员加到一块的平均工资是否小于 (x+y) ?
 - (1) 程序员多于统计员
 - (2) y x = 4,200
- **126.** 一件工作, A做的概率为 0.5, B做的 概率为 0.4, 问 A不做 B也不做的概 率范围为多少?

127.
$$a_1 = 1$$
, $a_{n+1} = 1 + \frac{1}{a_n}$, \mathcal{R} $a_5 = ?$

- **128.** a > b?
 - (1) 2b > a
 - (2) $(a-b)^2 = 1$
- 129. 一个龙头灌水的速度是另一个的 1.5 倍,两个一起灌要四小时,问效率高 的单独灌要多少小时?
- **130.** 一个飞机逆行 400 公里(单程)速度是 232

270 公里/小时,顺风是 300 公里/小时,问往返平均速度。

- 131. 已知 x, y为正整数,且 11<x<y<
 17,问: x, y的值分别为多少?
 (1) x和 y均为奇数
 (2) x和 y均为偶数
- 132. 从8个人中选三人组成三人小组,其中5女3男,问至少有一个男的有几种组合?有且仅有一个男的有几种?
- 133. 一个数为两个三位数之和,问其百位数是否为这两个三位数百位数之和?
 (1)此数的十位数为两个数的十位数之和;
 - (2)此数的个位数为两个数的个位数 之和。
- 134. 问 N 为多少?
 (1) N 只有 2 和 3 两个质因子
 (2) N 的因子个数为 12。
- **135.** 某地 150,000 个家庭,其中 80%的家庭装 有有线电视(cable TV),60%的家庭有录 像机(cassette video),问既有 CABLE 又有 CASSETTE 的家庭可能数。
- 136. 欲从 26 个字母中抽取字母组成三位数的 密码。密码的中间字母只能为元音字母 (A, E, I, O, U),密码前后两个字母 是不同的非元音字母。问:可组成多少种 不同的密码。
- **137.** 2^N 是 10! 的因子,问 N 值最大为多少?
- **138.** *x*, *y*, *z*是连续整数且 *x*<*y*<*z*, 问 *x* 是 否是偶数。
 - (1) xz是偶数
 - (2) xyz可被4整除。

- **139.** $u \times v \ge 0$? (1) u |v| = v |u|(2) $u^2 v = v^2 u$
- 140. 有两个骰子各为6个分值:1,2,3,4,5,6,问投这两个股子使其中一个比另 一个分值大2的概率?
- 141. 有 4 组人,每组 1 男 1 女,从每组各取 1个人,问取出 2 男 2 女的概率?
- 142. 有 0~9 这 10 个数字,先取出一个数记 下其值后把它放回去,再取一个数记下 其值,问当两次数值相加和为 8 时,出 现过 5 的概率?
- 143. 扔硬币使硬币向上的概率为 0.6,问扔 5 次,至少 4 次向上的概率?
- 144. 求 Median of a sequence (all the numbers are integers)
 (1) 25%的数大于等于 4
 (2) 35%的数小于等于 2
- 145. { x} denotes the greatest integer less than or equal to x. Is { x} =1?
 (1) x>1
 (2) x<2
- 146. 有五个停车位,三辆完全一样的红车, 一辆黄车,一辆绿车都停进去的方法有 多少种?

- 147. 有三个队每队派出三个人参加某一个比赛,如果某一队中一个人最后得了 n名,那么这个队就得了 6-n分,1≤n<≤5,没有平局。如果没有一个队得分超过 6分,问三个队中得分最低的队可能得多少分?</p>
- 148. m, n和 s分别是一个三位数的百位、十 位以及个位数,且 mns=96,问这个三 位数的个位数是多少?
 (1)这个数是奇数;
 (2)百位上的数字是 8。
- 149. 在一个直角坐标系上有一个正方形,其 三个顶点的坐标分别为(G,H),(G, -H),(-G,-H)。已知 G<0,H>
 0,问以下哪一个可能是该正方形的另一 个项点的坐标。
 (A)(-5,3)
 (B)(5,-3)
 (C)(-5,-3)
 (D)(-3,5)
 (E)(5,3)
- 150. One set of numbers consists of consecutive integers and the least number is 3. How many numbers are there in the set?
 - (I) The average of all the numbers in the set is 6;
 - (2) The number of integers is one more than the range of the set.

参考答案

1. C	21	3. D	4. C
5. D	6. 2	7. D	8. 1-0.6=0.4
9. C	10. A	11. 5	12. C
13. D	14. $C_5^1/C_{10}^2 = \frac{1}{9}$	15. $9 \times 48 + 2 + 6 = 440$	16. P_6^6
17. C	18. B	19. 0	$20. \frac{8 \times 6 \times 4}{P_3^3}$
21. $C_4^2/2^4$	22. D	23. C	24. $\frac{2}{6} = \frac{1}{3}$
25. $C_{15}^5 - C_{12}^2$	26. B	27. 24	28. 150
29. D	30. A	31. 0	32. B
33. A	34. 100	35. A	36. $\frac{C_3^1 \times C_4^2 \times P_2^2}{3^4}$
37. $C_2^1 \times C_4^1 \times P_5^4 + C_2^1 \times C_3^1$	$ imes P_5^4$	38. E	39. 0
40. $\frac{1}{7} \sim \frac{1}{6}$	41. 125	42. A	43. B
44. D	45. $C_7^1 \times C_{10}^2$	46. $2 \times P_3^3$	47. $3^3 = 27$
48. A	49. $C_4^1 P_7^2$	50.6	51. A
52. 86	53. 12	54. A	55. $\frac{386}{400}$
56. $C_6^4 - C_6^4$	57. $\frac{1}{5}$	58. C	59. $\frac{2}{3}$
60. 180°	61. E	62. $\frac{5}{7}$	63. A
64. $ x+1 < 2$	65. I and Ⅲ	66. t^4	67. $P_4^4 = 24$
68. C	69. C	70. E	71. E
72. $6/(C_6^1 \times C_6^1) = \frac{1}{6}$	73. 8	74. 0.49	
75. $\frac{M(M+1)}{2} - \frac{N(N-1)}{2}$	76. $1 - \frac{C_4^3}{C_8^3} = \frac{13}{14}$	77. E	78. $\sqrt{2}$ A
79. E	80. 200	81. 15	82. 29
83. $\frac{3}{16}$	84. C	85. 0	86.9
87. 9000	88.6	89. 30	90. 1 : 1
234			

91. 255	92. $2P_4^4 = 48$	93. $\frac{5}{6}$	94. D
95. $\frac{1}{3}$	96. $\frac{1}{3}$	97. $\frac{3}{4}$	98. 全部
99. A	100. $\frac{18}{48} = \frac{9}{24}$	101. $\frac{6}{13}$	102. $C_7^8 C_7^8$
103. 2	104. $3 \times 15 + 3 \times 12 +$	$3 \times 9 + 3 \times 6 + 3 \times 3 = 135$	
105. $4r < L < 4\sqrt{2}r$	106. C_6^3/C_7^4	107. 26	108. D
109. 3528	110. E	111. $2C_9^2C_3^1=216$	112. $\sqrt{2} \rightarrow \infty$
113. C	114. B.	115. D	116. A
117. C	118. B	119. C	120. $-\frac{152}{11}, -\frac{19}{11}$
121. $\frac{3}{8}$	122. —13	123. B	124. I and Ⅱ
125. C	126. 0.1~0.5	127. $\frac{8}{5}$	128. E
129. $\frac{20}{3}$	130. $\frac{5400}{19}$	131. A	132. $C_8^3 = C_5^3$, $C_3^1 \cdot C_5^2$
133. E	134. E	135. $40\% \sim 60\%$	136. $C_5^1 P_{21}^2$
137. 8	138. A	139. D	140. $\frac{4\times 2}{6\times 6}$
141. $\frac{C_4^2}{2^4}$	142. $\frac{2}{9}$	143. 0.6 ⁵ + $C_5^4 \times 0.6^4 \times 0$	0.4
144. C	145. C	146. 20	147. 3
148. A	149. E	150. A	

第四篇

最新 GMAT 数学机考模拟 150 题

5.

一、问题求解100题:

 If the areas of the three different sized faces of a rectangular solid are 6, 8, and 12, then what is the volume of the solid?
 (A) 576 (B) 288 (C) 144
 (D) 48 (E) 24

2. P Q R S T
If the spaces between the lettered points in the figure above are all equal, then PT/2 QS/2 is equal to which of the following?
(A) PS-QR (B) QR-QS (C) PR
(D) QT (E) ST

3. The average (arithmetic mean) of five number is 26. After one of the numbers is removed, the average (arithmetic mean) of the remaining numbers is 25. What number has been removed?

(A) 20	(B) 25	(C)	26
(D) 30	(E) 32		

3, k, 2, 8, m, 3
The arithmetic mean of the list of numbers above is 4. If k and m are integers and k≠m, what is the median of the list?
(A) 2
(B) 2.5
(C) 3
(D) 3.5
(E) 4

In the preceding figure, if $l_1 // l_2$, what is the value of x?

(A)	36	(B) 54	(C)	90
(D)	144	(E) 154		

- 6. Paul is standing 180 yards due north of point P, Franny is standing 240 yards due west of point P. What is the shortest distance between Franny and Paul?
 (A) 60 yards
 (B) 300 yards
 (C) 420 yards
 (D) 900 yards
 (E) 9,000 yards
- **7.** Which of the following can be expressed as the sum of three consecutive integers?
 - (A) 17(B) 23(C) 25(D) 30(E) 40
- 8. The arithmetic mean of a data set is 46 and the standard deviation of the set is 4. Which value is exactly 1.5 standard deviations from the arithmetic mean of the set?

(A) 42 (B) 44.5 (C) 47.5

(D) 50 (E) 52

- 9. For how many integers n is 2ⁿ = n²?
 (A) None
 (B) One
 (C) Two
 (D) Three
 (E) More than three
- 10. To meet a government requirement, a bottler must test 5 percent of its spring water and 10 percent of its sparkling water for purity. If a customer ordered 120 cases of spring water and 80 cases of sparkling water, what percent of all the cases must the bottler test before he can send it out?

(A) 6.5%
(B) 7.0%
(C) 7.5%
(D) 8.0%
(E) 8.5%

- 11. If a certain chemical costs \$50 for 30 gallons, then how many gallons of the chemical can be purchased for \$625?
 (A) 12.5 (B) 24 (C) 325
 (D) 375 (E) 425
- 12. A truck departed from Newton at 11 : 53a. m. and arrived in Far City, 240 miles away, at 4 : 41 p. m. on the same day. What was the approximate average speed of the truck on this trip?
 - (A) $\frac{16}{1,200}$ MPH (B) $\frac{240}{288}$ MPH (C) $\frac{1,494}{240}$ MPH (D) 50 MPH (E) $\frac{5,640}{5}$ MPH
- 13. In a certain population, 40 percent of all people have biological characteristic X; the others do not. If 8,000 people have characteristic X, how many people do not have X?

(A) 3200 (B) 4800 (C) 12,000

(D) 16,000 (E) 20,000

- 14. Exactly three years before the year in which Anna was born, the year was 1980-x. In terms of x, on Anna's twentieth birthday, the year will be

 (A) 1977+x
 (B) 1997+x
 (C) 2003-x
 (D) 2003+x
 (E) 2006+x
- 15. If cylinder P has a height twice that of cylinder Q and a radius half that of cylinder Q, what is the ratio between the volume of cylinder P and the volume of cylinder Q?
 (A) 1:8 (B) 1:4 (C) 1:2

(E) 2:1

16. Which of the following fractions expressed in the form $\frac{p}{q}$ is most nearly approximated by the decimal .PQ, where P is the tenths' digit and Q is the hundredths' digit?

(A)
$$\frac{1}{8}$$
 (B) $\frac{2}{9}$ (C) $\frac{3}{4}$
(D) $\frac{4}{5}$ (E) $\frac{8}{9}$

- The sum of four consecutive odd positive integers is always
 - (A) an odd number

(D) 1:1

- (B) divisible by 4
- (C) a prime number
- (D) a multiple of 3
- (E) greater than 24
- 18. If the width of a rectangle is increased by 25% while the length remains constant, the resulting area is what percent of the original area?
 (A) 25% (B) 75% (C) 125%
 (D) 225%

- (E) Cannot be determined from the information given.
- 19. In a certain company, the ratio of the number of women employees to the number of men employees is 3 to 2. If the total number of employees is 240, then how many of the employees are men?
 (A) 40 (B) 48 (C) 96
 (D) 144 (E) 160
- 20. What is the maximum number of cubes with sides of a length ¹/₂ s that could fit inside a cube with sides of length 2s?
 (A) 8 (B) 16 (C) 32
 (D) 64 (E) 128
- 21. Last year, a certain public transportation system sold an average (arithmetic mean) of 41,000 tickets per day on weekdays (Monday through Friday) and an average of 18,000 tickets per day on Saturday and Sunday. Which of the following is closest to the total number of tickets sold last year?

(A) 1 million	(B)	1.25 million
(C) 10 million	n (D)	12.5 million
(E) 19E		

- (E) 125 million
- 22. \$2000 is deposited into a savings account that earns interest at the rate of 10 percent per year, compounded semiannually. How much money will there be in the account at the end of one year?
 (A) \$2105 (B) \$2200 (C) \$2205

(D) **\$**2400 (E) **\$**2600

23. The diagonal of the floor of a rectangular closet is $7\frac{1}{2}$ feet. The shorter side of the

closet is $4\frac{1}{2}$ feet. What is the area of the closet in square feet?

- (A) 37 (B) 27 (C) $\frac{54}{4}$ (D) $\frac{21}{4}$ (E) 5
- 24. Joe works two part-time jobs. One week Joe worked 8 hours at one job, earning \$150, and 4.5 hours at other job, earning \$90. What were his average hourly earnings for the week?
 (A) \$8.00 (B) \$9.60 (C) \$16.00 (D) \$19.20 (E) \$32.00
- 25. Last year, an appliance store sold an average (arithmetic mean) of 42 microwave ovens per month. In the first 10 months of this year, the store has sold an average (arithmetic mean) of only 20 microwaves per month. What was the average number of microwaves sold per month during the entire 22-month period? (A) 21 (B) 30 (C) 31

What is the perimeter of pentagonVWXYZ shown above?(A) 53(B) 58(C) 60(D) 66(E) 70

27. A salesperson works 50 weeks each year and makes an average(arithmetic mean) of 100 sales per week. If each sale is worth

an average (arithmetic mean) of \$1,000, then what is the total value of sales made by the salesperson in a year?

•	-	•	
(A)	\$ 50,000	(B)	\$100,000
(C)	\$500,000	(D)	\$1,000,000
(E)	\$5,000,000		

- **28.** The product of three consecutive integers must be
 - I. Divisible by 3
 - ${\rm I\hspace{-1.5mm}I}$. Divisible by 5
 - \blacksquare . Divisible by 6
 - (A) I only
 - (B) ∏ only
 - (C) I and $I\!I$ only
 - (D) I and $I\!\!I$ only
 - (E) $[\![$, $[\![$, and $[\![$
- 29. A prize of \$240 is divided between two persons. If one person receives \$180, then what is the difference between the amounts received by the persons?
 (A) \$30
 (B) \$60
 (C) \$120
 (D) \$210
 (E) \$420

30. Ron can type five forms of a test in 4 hours. Joan can type the same five forms in 6 hours. If they work together, how many hours would it take them to type ten forms of a test?

(A)
$$2\frac{2}{5}$$
 (B) $4\frac{4}{5}$ (C) 5
(D) 10 (E) $12\frac{2}{5}$

31. If n is a positive integer and n² is divisible by 72, then the largest positive integer that must divide n is

(A) 6	(B) 12	(C)	24
(D) 36	(E) 48		

- 32. A first-grade teacher use ten flash cards, numbered 1 through 10, to teach her students to order numbers correctly. She has students choose four flash cards randomly, then arrange the cards in ascending order. One day, She removes the cards numbered "2" and "4" from the deck of flash cards. On that day, how many different correct arrangements of four randomly selected cards are possible?
 (A) 70 (B) 210 (C) 336 (D) 840 (E) 1.680
- 33. A survey of 100 persons revealed that 72 of them had eaten at restaurant P and that 52 of them had eaten at restaurant Q. Which of the following could not be the number of persons in the surveyed group who had eaten at both P and Q?
 (A) 20 (B) 24 (C) 30
 (D) 50 (E) 52
- 34. A laborer is paid \$8 per hour for an 8-hour day and 1 1/2 times that rate for each hour in excess of 8 hours in a singe day. If the laborer received \$80 for a single day's work, how long did he work on that day?
 (A) 6 hr. 40 min. (B) 9 hr. 20 min.
 (C) 9 hr. 30 min. (D) 9 hr. 40 min.
 (E) 10 hr.
- 35. A four-character password consists of one letter of the alphabet and three different digits between 0 and 9, inclusive. The letter must appear as the second or third character of the password. How many different passwords are possible?
 (A) 5,040 (B) 18,720 (C) 26,000

(D) 37,440 (E) 52,000

- **36.** A square countertop has a square tile inlay in the center, leaving an untiled strip of uniform width around the tile. If the ratio of the tiled area to the untiled area is 25 to 39, which of the following could be the width, in inches, of the strip?
 - I.1
 - Ⅱ.3
 - Ⅲ. 4
 - (A) I only
 - (B) **∏** only
 - (C) I and $I\!I$ only
 - (D) $\ensuremath{\underline{I}}$ and $\ensuremath{\underline{II}}$ only
 - (E) I , $I\!\!I$, and $I\!\!I$
- 37. Candy hearts were marked down from 30% to 50% on Valentine's Day. The following day, candy hearts were marked down an additional 25%. What was the lowest cost of a candy heart that originally sold for \$28?
 (A) \$7 (B) \$12.60 (C) \$14
 (D) \$15.40 (E) \$21
- **38.** Sam and Jessica are invited to a dance. If there are 7 men and 7women in total at the dance, and one woman and one man are chosen to lead the dance, what is the probability that Sam and Jessica will NOT be chosen to lead the dance?
 - (A) $\frac{1}{49}$ (B) $\frac{1}{7}$ (C) $\frac{6}{7}$ (D) $\frac{47}{49}$ (E) $\frac{48}{49}$

On the number line above, the segment from 0 to 1 has been divided into fifths, as indicated by the large tick marks, and also into sevenths, as indicated by the small tick marks. What is the <u>least</u> possible distance between any two of the tick marks?

(A)
$$\frac{1}{70}$$
 (B) $\frac{1}{35}$ (C) $\frac{2}{35}$
(D) $\frac{1}{12}$ (E) $\frac{1}{7}$

- 40. If *n* is an integer between 0 and 100, then any of the following could be 3*n*+3 EXCEPT
 (A) 300
 (B) 297
 (C) 208
 (D) 63
 (E) 6
- **41.** If x is an even integer and y is an odd integer, then which of the following is an even integer?

(A)
$$x^{2} + y$$
 (B) $x^{2} - y$
(C) $(x^{2})(y)$ (D) $x + y$
(E) $x - y$

- 42. A salesman makes a profit of 25% on all sales. How many fax machines will he have to sell for \$375 each to make a total commission of at least \$500?
 - (A) 4 (B) 5 (C) 6 (D) 15 (E) 20
- **43.** Jerome wrote each of the integers 1 through 20, inclusive, on a separate index card. He placed the cards in a box, then drew cards one at a time randomly from the box, without returning the cards he had already drawn to the box. In order to ensure that the sum of all the cards he drew was even, how many cards did Jerome have to draw?

44. If triangle AOB is equilateral, O is the center of the semicircle ABC, and the radius of semicircle ABC is 6, what is the

45. The contents of a certain box consist of 14 apples and 23 oranges. How many oranges must be removed from the box so that 70 percent of the pieces of fruit in the box will be apples?

(A) 3	(B) 6	(C) 14
(D) 17	(E) 20	

46. A number of bricks were purchased to build a fireplace, at a cost of 40 cents each, but only $\frac{3}{4}$ of them were needed. If the unused 190 bricks were returned and their cost refunded, what was the cost of the bricks used to make the fireplace?

(A) **\$**76 (B) **\$**228 (C) **\$**304 (D) **\$**414 (E) **\$**570

- **47.** At a college football game, $\frac{4}{5}$ of the seats in the lower deck of the stadium were sold. If $\frac{1}{4}$ of all the seating in the stadium is located in the lower deck, and if $\frac{2}{3}$ of all the seats in the stadium were sold, what fraction of the unsold seats in the stadium were in the lower deck?
 - (A) $\frac{3}{20}$ (B) $\frac{1}{6}$ (C) $\frac{1}{5}$ (D) $\frac{1}{3}$ (E) $\frac{7}{15}$

48.	ADVANCED PURCHASE DISCOUNTS FOR AIRLINE TRAVEL				
	Days Prior to Departure	Percentage Discount			
	0~6 days	0 %			
	7~13 days	10%			

 $14 \sim 29 \text{ days}$

30 days or more The table above shows the discount structure for advanced purchase of tickets at a particular airline. A passenger bought a ticket at this airline for \$1,050. The ticket agent informed her that, had she purchased the ticket one day later, she would have paid \$210 more. How many days before her departure did she purchase her ticket?

25%

40%

- (A) 6 days
- (B) 7days
- (C) 13 days
- (D) 14 days
- (E) 29 days

49.

The product of the two-digit numbers above is the three-digit number $\Box \diamondsuit \Box$, where \Box , \triangle , and \diamondsuit , are three different nonzero digits. If $\Box \times \triangle < 10$, what is the two-digit number $\Box \triangle$?

(A) 11	(B) 12	(C) 13
(D) 21	(E) 31	

How many minutes will it take to 50. completely fill a water tank with a capacity of 3,750 cubic feet if the water is being pumped into the tank at the rate of 800 cubic feet per minute and is being drained out of the tank at the rate of 300 cubic feet per minute?

(A) 3 min. 36 sec.	(B) 6 minutes
(C) 7 min. 30 sec.	(D) 8 minutes
(E) 1,875 minutes	

- 51. In 1960, the number of students enrolled at a college was 500. In 1980, the number of students enrolled at the college was 2 1/2 times as great as that in 1960. What was the number of students enrolled at the college in 1980?
 (A) 1,750 (B) 1,250 (C) 1,000
 (D) 500 (E) 250
- 52. A car dealer who gives a customer a 20 percent discount on the list price of a car still realizes a net profit of 25 percent of cost. If the dealer's cost is \$4800, what is the usual list price of the car?

(A) \$6000
(B) \$6180
(C) \$7200
(D) \$7500
(E) \$8001

53. A clothing supplier stores 800 coats in a warehouse, of which 15 percent are full-length coats. If 500 of the shorter length coats are removed from the warehouse, what percent of the remaining coats are full length?
(A) 5. 62% (B) 9. 37% (C) 35%
(D) 40% (E) 48%

54.	District	Number	Percent of	Percent of
		Of	Votes for	Votes for
		Votes	Candidate P	Candidate Q
	1	800	60	40
	2	1,000	50	50
	3	1,500	50	50
	4	1,800	40	60
	S	1,200	30	70

The table above shows the results of a recent school board election in which the candidate with the higher total number of votes from the five districts was declared the winner. Which district had the greatest number of votes for the winner? (A) 1 (B) 2 (C) 3 (D) 4 (E) 5

- 55. Two cars left the same town traveling in the same direction. Car A traveled 40 miles per hour and left at 3 : 20. Car B traveled 50 miles per hour and left at 4 : 40. At what time will car B catch up with car A?
 (A) 10 : 00 (B) 9 : 00 (C) 8 : 40
 (D) 7 : 20 (E) 6 : 10
- 56. If r and s are integers and rs+r is odd, which of the following must be even? (A) r (B) s (C) r+s(D) rs-r (E) r^2+s
- 57. In a certain flower shop, which stocks four types of flowers, there are $\frac{1}{2}$ as many violets as carnations, and $\frac{1}{2}$ as many tulips as violets. If there are equal numbers of roses and tulips, what percent of the flowers in the shop are carnations? (A) 10% (B) 33% (C) 40% (D) 50% (E) 60%
- 58. During a sale at an office supply store, for every box of paper clips purchased for 15 cents, a second box can be purchased for 4 cents. How many boxes of paper clips did Paul buy if he spent 91 cents on boxes of paper clips?

(A) 6 (B) 7 (C) 8

(D) 9 (E) 10

- 59. A person is standing on a staircase. He walks down 4 steps, up 3 steps, down 6 steps, up 2 steps, up 9 steps, and down 2 steps. Where is he standing in relation to the step on which he started?
 - (A) 2 steps above
 - (B) 1 step above
 - (C) the same place
 - (D) 1 step below
 - (E) 2 steps below
- **60.** If the value of a piece of property decreases by 10 percent while the tax rate on the property increases by 10 percent, what is the effect on the taxes?
 - (A) Taxes increase by 10 percent.
 - (B) Taxes increase by 1 percent.
 - (C) There is no change in taxes.
 - (D) Taxes decrease by 1 percent.
 - (E) Taxes decrease by 10 percent.
- 61. Machines A and В always operate independently and at their respective constant rates. When working alone, machine A can fill a production lot in 5 hours, and machine B can fill the same lot in x hours. When the two machines operate simultaneously to fill the production lot, it takes them 2 hours to complete the job. What is the value of x?

(A)
$$3\frac{1}{3}$$
 (B) 3 (C) $2\frac{1}{2}$
(D) $2\frac{1}{3}$ (E) $1\frac{1}{2}$

62. The Binary Ice Cream Shoppe sells two flavors, vanilla and chocolate. On Friday, the ratio of vanilla cones sold to chocolate

cones sold was 2 to 3. If the store had sold 4 more vanilla cones, the ratio of vanilla cones sold to chocolate cones sold would have been 3 to 4. How many vanilla cones did the store sell on Friday? (A) 32 (B) 35 (C) 42 (D) 48 (E) 54

- 63. A recipe for soda requires w liters of water for every liter of syrup. If soda is made according to this recipe using m liters of syrup, and sold for j dollars a litter, what will be the gross profit if syrup costs k dollars a liter and water costs nothing?
 - (A) m(w+j-k)
 - (B) $jm\left(\frac{1}{w}+1\right)$
 - (C) m(jw-k)
 - (D) (j-k)m
 - (E) jm(1+w)-km
- 64. Steve gets on the elevator at the 11th floor of a building and rides up at a rate of 57 floors per minute. At the same time Joyce gets on an elevator on the 51st floor of the same building and rides down at a rate of 63 floors per minute. If they continue traveling at these rates, at which floor will their paths cross?

(A) 19(B) 28(C) 30(D) 32(E) 44

65. After reading $\frac{3}{5}$ of his biology homework on Monday night, Bernie read $\frac{1}{3}$ of his remaining homework on Tuesday night. What fraction of his original homework would Bernie have to read on Wednesday night to complete his biology assignment?

(A)
$$\frac{1}{15}$$
 (B) $\frac{2}{5}$ (C) $\frac{4}{15}$
(D) $\frac{2}{5}$ (E) $\frac{4}{5}$

- **66.** A certain grocery purchased *x* pounds of produce for *p* dollars per pound. If *y* pounds of the produce had to be discarded due to spoilage and the grocery sold the rest for *s* dollars per pound, which of the following represents the gross profit on the sale of the produce?
 - (A) (x y) s xp
 - (B) (x y) p ys
 - (C) (s-p)y-xp
 - (D) xp ys
 - (E) (x-y)(s-p)

The figure above is a regular hexagon with center H, The shaded area is a parallelogram that shares three vertices with the hexagon; its fourth vertex is the center of the hexagon. If the length of one side of the hexagon is 8 centimeters, what is the area of the unshaded region?

(A) 16 $\sqrt{3}$ cm ³	(B) 96 cm^3
(C) 64 $\sqrt{3}$ cm ³	(D) 96 $\sqrt{3}$ cm ³
(E) 256 cm^3	

68. A box contains 100 balls, numbered from 1 to 100. If three balls are selected at random and with replacement from the box, what is the probability that the sum of the three numbers on the balls selected from the box will be odd?

- (A) $\frac{1}{4}$ (B) $\frac{3}{8}$ (C) $\frac{1}{2}$ (D) $\frac{5}{8}$ (E) $\frac{3}{4}$
- 69. One number will be chosen randomly from each of the sets above. If x represents the chosen member of Set X and y represents the chosen member of Set Y, what is the probability that $\frac{x}{y}$ will be an integer?

(A)
$$\frac{1}{16}$$
 (B) $\frac{3}{8}$ (C) $\frac{1}{2}$
(D) $\frac{3}{4}$ (E) $\frac{15}{16}$

- 70. If a = 1 and a-b/c = 1, which of the following is NOT a possible value of b?
 (A) -2
 (B) -1
 (C) 0
 (D) 1
 (E) 2
- 71. A child withdraws from his piggy bank 10% of the original sum in the bank. If he must add 90¢ to bring the amount in the bank back up to the original sum, what was the original sum in the bank?
 (A) \$1.00 (B) \$1.90 (C) \$8.10 (D) \$9.00 (E) \$9.90
- 72. The enrollments at College X and College Y both grew by 8 percent from 1980 to 1985. If the enrollment at College X grew by 800 and the enrollment at College Y grew by 840, the enrollment at College Y was how much greater than the enrollment at College X in 1985?

(A) 400	(B) 460	(C)	500
(D) 540	(E) 580		

73. A business firm reduces the number of hours its employees work from 40 hours per week to 36 hours per week while continuing to pay the same amount of money. If an employee earned x dollars per hour before the reduction in hours, how much does he earn per hour under the new system?

(A)
$$\frac{1}{10}$$
 (B) $\frac{x}{9}$ (C) $\frac{9x}{10}$
(D) $\frac{10x}{9}$ (E) $9x$

74. In a certain group of people, $\frac{3}{8}$ of the people are men, and $\frac{2}{3}$ of the men have brown eyes. If $\frac{3}{4}$ of the people have brown eyes, then what fraction of the group are women who do not have brown eyes?

(A)
$$\frac{1}{8}$$
 (B) $\frac{3}{16}$ (C) $\frac{1}{4}$
(D) $\frac{5}{16}$ (E) $\frac{3}{8}$

75. On Monday, a certain animal shelter housed 55 cats and dogs. By Friday, exactly $\frac{1}{5}$ of the cats and $\frac{1}{4}$ of the dogs had been adopted; no new cats or dogs were brought to the shelter during this period. What is the greatest possible number of pets that could have been adopted from the animal shelter between Monday and Friday?

(A) 11	(B) 12	(C) 13
(D) 14	(E) 20	

76. If $\frac{1}{2}$ of the money in a certain trust fund

was invested in stocks, $\frac{1}{4}$ in bonds, $\frac{1}{5}$ in a mutual fund, and the remaining \$10, 000 in a government certificate, what was the total amount of the trust fund? (A) \$100,000 (B) \$150,000 (C) \$200,000 (D) \$500,000 (E) \$2,000,000

77. How many two-digit numbers can be written using digits 0 through 6 if no digit can be repeated and 0 cannot be the first digit?
(A) 49 (B) 42 (C) 36

(E) 25

(D) 30

78. A department store receives a shipment of 1,000 shirts, for which it pays \$9,000. The store sells the shirts at a price 80 percent above cost for one month, after which it reduces the price of the shirts to 20 percent above cost. The store sells 75 percent of the shirts during the first month and 50 percent of the remaining shirts afterward. How much gross income did sales of the shirts generate?

(A) \$ 10,000	(B) \$ 10,800
(C) \$ 12,150	(D) \$ 13,500
(E) \$ 16,200	

79. A group of 20 friends formed an investment club, with each member contributing an equal amount to the general fund. The club then invested the entire fund, which amounted to d dollars, in Stock X. The value of the stock subsequently increased 40 percent, at which point the stock was sold and the proceeds divided evenly among the members. In terms of d, how much money did each member of the club receive from the sales (Assume that transaction fees and other associated costs were negligible).

- (A) 800 d (B) $\frac{7d}{5}$ (C) $\frac{d}{20}$ + 40 (D) $\frac{d}{2}$ (E) $\frac{7d}{100}$
- 80. John budgeted 50% of his take-home pay for household expense, 20% for transportation, 15% for a retirement fund, and the remaining \$240 for recreation. How much of his take-home pay did he budget for household expenses?
 (A) \$500 (B) \$800 (C) \$1,000 (D) \$1,200 (E) \$240

81.

1.	1	2	3	4	5	6	7
	-2	-4	-6	-8	-10	-12	-14
	3	6	9	12	15	18	21
	-4	-8	-12	-16	-20	-24	-28
	5	10	15	20	25	30	35
	-6	-12	-18	-24	-30	-36	-42
	7	14	21	28	35	42	49

What is the sum of the integer in the table above?

(A) 28	(B) 112	(C) 336
(D) 448	(E) 784	

82. The width of a rectangle is 6 cm less than the length. If the perimeter of the rectangle is 48 cm, what is the length of the rectangle in centimeters?

(A) 48(B) 15(C) 12(D) 9(E) 6

 83. Together, Andrea and Brian weigh p pounds; Brian weighs 10 pounds more than Andrea. Brian and Andrea's dog, Cubby, weighs $\frac{p}{4}$ pounds more than Andrea. In terms of *p*. what is Cubby's weight in pounds?

(A)
$$\frac{p}{2} - 10$$
 (B) $\frac{3p}{4} - 5$ (C) $\frac{3p}{2} - 5$
(D) $\frac{5p}{4} - 10$ (E) $5p - 5$

84. It takes 10 people 16 hours to complete a certain job. How many hours would it take 8 people, working at the same rate, to complete $\frac{3}{4}$ of the job?

(A) 12 (B)
$$12 \frac{4}{5}$$
 (C) 15
(D) 16 (E) 20

If the variables, X, Y, and Z take on only the values 10, 20, 30, 40, 50, 60, or 70 with frequencies indicated by the shaded regions above, for which of the frequency distributions is the mean equal to the median? (A) X only (B) Y only (C) Z only

- (D) X and Y (E) X and Z
- 86. Cans of tennis balls were purchased for the tournament at a cost of \$1.90 per can. Only $\frac{3}{4}$ of the cans were used for the tournament, so the 24 unused cans were
returned for a refund. What was the cost of the cans of tennis balls used for the tournament?

(A) \$ 34.20	(B) \$ 45.60
(C) \$ 60.80	(D) \$ 124.20
(E) \$ 136,80	

87. The people eating in a certain cafeteria are either faculty members or students, and the number of faculty members is 15 percent of the total number of people in the cafeteria. After some of the students leave, the total number of persons remaining in the cafeteria is 50 percent of the original total. The number of students who left is what fractional part of the original number of students?

(A)
$$\frac{17}{20}$$
 (B) $\frac{10}{17}$ (C) $\frac{1}{2}$
(D) $\frac{1}{4}$ (E) $\frac{7}{20}$

- 88. A painter has painted one-third of a rectangular wall which is ten feet high. When she has painted another 75 square feet of wall, she will be three-quarters finished with the job. What is the length (the horizontal dimension) of the wall?
 (A) 18 feet (B) 12 feet (C) 10 feet (D) 9 feet (E) 6 feet
- **89.** A figure that can be folded over along a straight line so that the result is two equal halves which are then lying on top of one another with no overlap is said to have a line of symmetry. Which of the following figures has only one line of symmetry?
 - (A) Square
 - (B) Circle
 - (C) Equilateral triangle

- (D) Isosceles triangle
- (E) Rectangle
- 90. To fill a number of vacancies, an employer must hire 3 programmers from among 6 applicants, and 2 managers from among 4 applicants.
 What is the total number of ways in which she can make her selection?
 (A) 1,490 (B) 132 (C) 120
 (D) 60 (E) 23
- 91. A student had an average of 86 for three tests. If the student's highest test score was 2a, what was the average of the student's two lowest scores?
 - (A) 129-2a (B) 258-2a(C) 129-a (D) 258+2a(E) 258-a
- **92.** If x, y, and z are positive integers such that x is a factor of y, and x is a multiple of z, which of the following is NOT necessarily an integer?

(A)
$$\frac{x+z}{z}$$
 (B) $\frac{y+z}{x}$ (C) $\frac{x+y}{z}$
(D) $\frac{xy}{z}$ (E) $\frac{yz}{x}$

93. Tom reads at an average rate of 30 pages per hour, while Jan reads at an average rate of 40 pages per hour. If Tom starts reading a novel at 4:30, and Jan begins reading an identical copy of the same book at 5:20, at what time will they be reading the same page?

94. A computer is programmed to generate a 247

list of multiples of prime numbers 2, 3, and 5, as shown below:

Program 1—List multiples of 2

Program 2-List multiples of 3

Program3—list multiples of 5

How many integers between 1 and 100 will appear on all three of the lists of the programs produced above?

(A)	None	(B)	1

(C) 3 (D) 5

(E) An infinite number of integers

95.

$\frac{FGF}{X G}$ HGG

In the multiplication problem above, F, G, and H represent unique odd digits. What is the value of the three-digit number FGF?

(A) 151	(B) 161	(C) 171
(D) 313	(E) 353	

96. A \$500 investment and a \$1, 500 investment have a combined yearly return of 8.5 percent of the total of the two investments. If the \$500 investment has a yearly return of 7 percent, what percent yearly return does the \$1,500 investment have?

(A) 9% (B) 10% (C) $10\frac{5}{8}\%$ (D) 11% (E) 12%

97. A group of store managers must assemble 280 displays for an upcoming sale. If they assemble 25 percent of the displays during the first hour and 40 percent of the remaining displays during the second hour, how many of the displays will <u>not</u> have been assembled by the end of the second hour?

(A) 70	(B) 98	(C) 126
(D) 168	(E) 182	

- 98. A grocer is storing small cereal boxes in large cartons that measure 25 inches by 42 inches by 60 inches. If the measurement of each small cereal box is 7 inches by 6 inches by 5 inches, then what is the maximum number of small cereal boxes that can be placed in each large carton?
 (A) 25 (B) 210 (C) 252
 (D) 300 (E) 420
- **99.** A student conducts an experiment in biology lab and discovers that the ratio of the number of insects in a given population having characteristic X to the number of insects in the population not having characteristic X is 5:3, and that $\frac{3}{8}$ of the insects having characteristic X are male insects. What proportion of the total insect population are male insects having the characteristic X?

(A) 1 (B)
$$\frac{5}{8}$$
 (C) $\frac{6}{13}$
(D) $\frac{15}{64}$ (E) $\frac{1}{5}$

100. Jolene began building a picket fence by planting stakes in a row; the stakes were evenly spaced. After planting the first 10 stakes, Jolene measured the length of the row and found that the row was 27 feet long. She continued the row by planting another 10 stakes, then measured the length of the entire row. How many feet long was the row of stakes Jolene had planted?

(A) 37	(B) 54	(C)	57
(D) 60	(E) 81		

二、数据充分 50 题

- 101. Mr. Daniels deposits \$10,000 in a savings certificate earning p percent annual interest compounded quarterly. What is the value of p?
 - During the term of the certificate, he earns \$18 more than he would if the interest were not compounded.
 - (2) He withdraws all the money six months after depositing it.
- 102. For a certain performance at a concert hall, a total of 2,350 tickets were sold in the orchestra, first mezzanine, and second mezzanine. How many orchestra tickets were sold?
 - The number of first mezzanine tickets sold was one-half the number of second mezzanine tickets sold.
 - (2) The total number of first and second mezzanine tickets sold was 50 percent greater than the number of orchestra tickets sold.
- 103. At Company R, the average (arithmetic mean) age of executive employees is 54 years old and the average age of nonexecutive employees is 32 years old. What is the average age of all the employees at Company R?
 - There are 10 executive employees at Company R.
 - (2) The number of non-executive employees at Company R is four times the number of executive employees at Company R.

Rectangle WXYZ is inscribed in a circle with center O as shown above. If the diameter of the circle is equal to 16, then what is the area of the shaded region?

- (1) WZ = OW
- (2) $XW \leq XY$
- **105.** There are 105 students taking history and/or mathematics. How many students are taking only mathematics?
 - (1) Thirty students are taking history only.
 - (2) Fifty students are taking both history and mathematics.

What is the area of triangle *PST* shown above?

- (1) The area of rectangle PQRS is 40.
- (2) The area of parallelogram PTRU is 32.
- 107. At a restaurant, Luis left a tip for his waiter equal to 20 percent of his entire dinner check, including tax. What was the amount of the dinner check?
 - (1) The sum of the dinner check and the

249

106.

tip was \$16.80.

- (2) Luis' tip consisted of two bills and four coins.
- **108.** Every student graduating from Burgerville College is either a 4-year student or a transfer student. If Burgerville is graduating an equal number of 4-year students and transfer students, what fraction of the students who graduate with honors are transfer students?
 - (1) Of the 700 transfer students graduating, 300 are graduating with honors.
 - (2) Fifty percent more transfer students than 4-year students are graduating with honors.

Find the area of $\triangle ABD$ if BC=8 inches.

- A line dropped perpendicular to BC from AD=5 inches.
- (2) ABCD is a parallelogram.

What is the length of side AC of triangle ABC?

(1) AB=13 and BC=5

- (2) x + y = 90
- 111. An automobile dealership sells only sedans and coupes. It sells each in only two colors: red and blue. Last year, the dealership sold 9, 000

vehicles, half of which were red. How many coupes did the dealership sell last year?

- The dealership sold three times as many blue coupes as red sedans last year.
- (2) The dealership sold half as many blue sedans as blue coupes last year.
- 112. A piece of paper in the shape of an isosceles right triangle is cut along a line parallel to the hypotenuse of the triangle, leaving a smaller triangular piece. If the area of the triangle was 25 square inches before the cut, what is the new area of the triangle?
 - (1) The cut is made 2 inches from the hypotenuse.
 - (2) There was a 40 percent decrease in the length of the hypotenuse of the triangle.
- 113. Todd's construction company is capable of building 40 houses a year. Todd's brother Mike also owns a construction company. How long does it take the two companies together to build 64 houses?
 - Mike's construction company is capable of building houses twice as fast as Todd's company does.
 - (2) Mike's construction company is capable of building 20 houses every three months.
- **114.** What is the ratio of men to women enrolled in a certain class?
 - The number of women enrolled in the class is 3 less than half the number of men enrolled.

109.

- (2) The number of women enrolled in the class is $\frac{2}{5}$ of the number of men enrolled.
- 115. The projected school tax rate is set at \$11.25 per 1,000. What is X's house assessed for?
 - Mr. X will pay \$202.50 in school taxes under the proposed new budget.
 - (2) He paid \$217.85 last year.
- 116. During July, a mail order retailer received 3,300 order for amounts less than \$100, and 1, 100 orders for amounts of at least \$100. What was the average size of an order in July?
 - The gross sales from the orders less than \$100 equaled the gross sales from the orders greater than \$100.
 - (2) The orders for less than \$100 account for a total of \$134,000 in gross sales.

117.

In the figure above, does a=b? (1) $x=\gamma$ (2) c=x

- 118. Which sport utility vehicle has a higher list price, the Touristo or the Leisure?
 - (1) The list price of the Leisure is $\frac{5}{6}$ the list price of the Touristo.
 - (2) The list price of the Touristo is 1.2

times the list price of the Leisure.

- 119. If 60 percent of the employees at Company X are female, does Company X have more than 100 female employees?
 - (1) Company X has more than 150 employees.
 - (2) Company X has 74 more female employees than male employees.

120.

Triangle QRS is inscribed in a circle. Is QRS a right triangle?

- (1) QR is a diameter of the circle.
- (2) Length QS equals 3 and length QR equals 5.
- 121. If Beth spent \$400 of her earnings last month on rent, how much did Beth earn last month?
 - (1) Beth saved $\frac{1}{3}$ of her earnings last month and spent half of the remainder on rent.
 - (2) Beth earned twice as much this month as last month.
- 122. A certain bread recipe calls for whole wheat flour, white flour, and oat flour in the ratio of 3:2:1, respectively. How many cups of oat flour are needed to make a loaf of bread?
 - (1) A total of 30 cups of whole wheat and white flour are needed to make

3 loaves of bread.

- (2) Two more cups of whole wheat flour than white flour are needed for every loaf.
- 123. If a rectangle has length a and width b, what is its area?

(1)
$$2a = \frac{15}{b}$$

(2) $a = 2b - 2$

- 124. Joan had a total of \$16.50 in her coin bank. How many quarters does she have?
 - The bank contains only quarters and dimes.
 - (2) There were 81 coins in the bank.

In the figure above, what is the length of *PQ* times the length of *RS*?

- (1) The length of PQ is 5.
- (2) The length of QR times the length of PR is equal to 12.
- 126. A garden is surrounded by a path that is 4 feet wide. What is the area of the path?
 - (1) The area of the path is $\frac{1}{4}$ of the area of the garden.
 - (2) The garden is circular with a 12-foot diameter.
- 127. A survey of 600 computer owners revealed that they owned a modem and/

or a scanner. How many of the people surveyed owned only a modem?

- The number of people surveyed who owned only a modem was three times the number of people who owned only a scanner.
- (2) Four hundred people who were surveyed owned both a modem and a scanner, which was eight times the number of people surveyed who owned only a scanner.
- 128. In 1988, was the number of people in City X greater than three times the number of people in City Y?
 - In 1988, there were approximately
 1 million more people in City X than in City Y.
 - (2) In 1988, the 300,000 Mormons in City X made up 20 percent of its population, and the 141, 000 Buddhists in City Y made up 30 percent of its population.
- 129. A university awarded grants in the amount of either \$7,000 or \$10,000 to some incoming freshmen. The total amount of all such awards was \$2,300,000. Did the university award more \$7,000 grants than \$10,000 grants to its incoming freshmen?
 - A total of 275 freshmen received grants in one of the two amounts.
 - (2) The amount of money awarded in \$10,000 grants was \$200,000 more than the amount of money awarded in \$7,000 grants.
- 130. In a certain country, the retail price includes a value added tax of 12 $\frac{1}{2}$

125.

percent of the sum of the wholesale cost and the markup of an item.

If the value added tax on a certain jacket is 6 shillings, what is the wholesale cost of a jacket in shillings?

- (1) The markup represents 50 percent of the wholesale cost.
- (2) The markup of the jacket is 16 shillings.

(2) AB+BC=7

- 132. Over a seven-week period a company monitored the output of two of its branches, C and D. Each week the company calculated how many units were produced in each branch. The branch that produced the greatest number of units for four or more of the seven weeks was considered the more efficient branch. Which office was deemed the more efficient?
 - Over the seven-week period Branch C produced twice as many units as Branch D.
 - (2) The branch that was more efficient was known by the fifth week.

What is the area of the figure above

formed by a square and four semicircles? (1) The perimeter of the figure is 12π .

- (2) The perimeter of the square is 24.
- 134. David has three credit cards: a Passport card, an Everywhere Card, and an American Local card. He owes balances on all three cards. Does he owe the greatest balance on the Everywhere Card?
 - The sum of the balances on his Everywhere Card and American Local card is \$1, 350, which is three times the balance on his Passport card.
 - (2) The balance on his Everywhere Card is $\frac{4}{3}$ of the balance on his Passport card and $\frac{4}{5}$ of the balance on his American Local card.
- 135. Adult and children's tickets were sold for the circus. If 100 adult tickets and 200 children's tickets were sold, how much money was collected for ticket sales?
 - Two adult tickets and four children's tickets cost \$40.
 - (2) Adult tickets cost twice as much as children's tickets.
- 136. One hundred cars on a particular lot were available with a compact disc player, a car phone, or both. How many cars had only a car phone?
 - The number of cars with compact disc players was twice the number of cars with both a compact disc player and a car phone.

(2) Thirty cars had both, which was half the number of cars with compact disc players.

> *u t* 8 4

A computer generates non-zero numbers for the figure above so that the product of the numbers along any vertical column is equal to the product of the numbers in any horizontal row. What number does *s* represent?

(1) u equals 6.

137.

(2) *t* equals 2.

In the figure above, what is the value of r? (1) c=2(2) c=d

- 139. A certain car dealership has two locations. Last month, an average (arithmetic mean) of 11 cars per salesperson was sold at location A and an average of 16 cars per salesperson was sold at location B. What was the average number of cars sold per salesperson at this dealership last month?
 - (1) Last month, the number of salespeople at location A was 3 times the number of salespeople at

location B.

- (2) Last month, the total number of cars sold at location A was 132, and the total number of cars sold at location B was 64.
- 140. During a five-day period, Monday through Friday, the average (arithmetic mean) high temperature was 86 degrees Fahrenheit. What was the high temperature on Friday?
 - The average high temperature for Monday through Thursday was 87 degrees Fahrenheit.
 - (2) The high temperature on Friday reduced the average high temperature for the week by 1 degree Fahrenheit.
- 141. All of the tickets for two real estate seminars, F and G, were either purchased or given away, and the ratio of F tickets to G tickets was 2 to 1. Of the total number of F tickets and G tickets, what percentage was purchased?
 - (1) The total number of F tickets and G tickets is 240.
 - (2) Of the F tickets, exactly 60 percent were purchased, and of the G tickets, exactly 80 percent were purchased.
- 142. A home owner must pick between paint A, which costs \$6.00 per liter, and paint B, which costs \$4.50 per liter. Paint B takes one-third longer to apply than paint A. If the home owner must pay the cost of labor at the rate of \$36 per hour, which of the two paints will be cheaper to apply?

- The ratio of the area covered by one liter of paint A to the area covered by paint B is 4:3.
- (2) Paint A will require 40 liters of paint and 100 hours of labor.

Circle O is inscribed in parallelogram ABCD, whose base is 12 inches. Find the area of the shaded portion.

- (1) The radius of the circle is 4 inches.
- (2) DC is twice as long as AD.
- **144.** What is the value of the sum of a sequence of three consecutive even integers?
 - (1) The average of the three consecutive even integers is 14.
 - (2) The product of the smallest and largest is 192.
- 145. If point X is directly north of point Y and directly west of point Z, what is the distance from point X to point Z?
 - (1) The distance from Y to Z is 20.
 - (2) The distance form X to Y is equal to half the distance form Y to Z.
- 146. In a certain law firm there are five senior partners and five junior partners and all senior partners receive bonuses greater than those of the junior partner. Does senior partner Johnson receive the largest bonus of the lawyers at the firm?
 - Johnson receives a bonus greater than twice the average bonus for all the senior partners.

(2) All partners receive some bonus, and Mr. Johnson receives five times the average given to all the partners.

147.	Class	Average Age	No. of Students
	А	15 years	6
	В	16 years	12

Is the standard deviation of ages of students in class A greater than the standard deviation of the age of students in class B?

- The difference between the ages of any two students in class A is always more than 1 year.
- (2) No Student in class B is more than 6 months older than any other student.
- 148. What is the approximate distance between New York City and Montauk Point, Long Island?
 - Road map A shows that the distance from New York City to Hicksville is Approximately 15 inches, when 1 inch=1.3 miles.
 - (2) Road map B shows that the distance from Hicksville to Montauk Point is ap-proximately 36 inches, when 1 inch=2.6 miles.

149.

In the figure above, line segments JKand LM represent two positions of the same board leaning against the side KNof a wall. The length of KN is how much greater than the length of MN? (1) The length of LN is $\sqrt{2}$ meters. (2) The length of JN is 1 meter.

150. Automobile A is traveling at two-thirds the speed that Automobile B is traveling. How fast is Automobile A traveling?(1) If both automobiles increased their

speed by 10 miles per hour, Automobile A would be traveling at three-quarters the speed that Automobile B would be traveling.

(2) If both automobiles decreased their speed by 10 miles per hour, Automobile A would be traveling at half the speed that Automobile B would be traveling.

参考答案

1. E	2. E	3. D	4. C	5. D
6. B	7. D	8. E	9. C	10. B
11. D	12. D	13. C	14. C	15. C
16. E	17. B	18. C	19. C	20 D
21. D	22. C	23. B	24. D	25. D
26. D	27. E	28. D	29. C	30. B
31. B	32. A	33. A	34. B	35. D
36. E	37. A	38. E	39. B	40. C
41. C	42. C	43. B	44. B	45. D
46. B	47. A	48. D	49. D	50. C
51. B	52. D	53. D	54. D	55. A
56. B	57. D	58. D	59. A	60. D
61. A	62. A	63. E	64. C	65. C
66. A	67. C	68. C	69. B	70. D
71. D	72. D	73. D	74. A	75. C
76. C	77. C	78. D	79. E	80. B
81. B	82. B	83. B	84. C	85. E
86. E	87. B	88. A	89. D	90. C
91. C	92. B	93. D	94. C	95. A

256

96. A	97. C	98. D	99. D	100. C
101. C	102. B	103. B	104. A	105. C
106. C	107. A	108. B	109. C	110. C
111. C	112. D	113. D	114. B	115. A
116. C	117. C	118. D	119. B	120. A
121. A	122. D	123. A	124. C	125. B
126. B	127. B	128. B	129. D	130. D
131. A	132. E	133. D	134. B	135. A
136. B	137. A	138. B	139. D	140. D
141. B	142. E	143. A	144. D	145. C
146. B	147. C	148. E	149. D	150. D

GMAT 常用数学术语汇编

abscissa	横坐标	billion	10亿
absolute value	绝对值,例如 $ a = -a $,	binomial	二项式
	其中 a 为任意实数	bisect	平分
acute angle	锐角	blot out	涂掉
acute triangle	锐角三角形	brace	一双,如: a brace of cats两只猫
add (addition)	加(加法)	calculate to three	
adjacent angle	邻角	decimal places	计算结果保留三位小数
adjacent vertices	相邻顶点	cancellation	相消,相约
algebra	代数	car pool	汽车的合伙使用
algebraic expression	代数式	cardinal	基数
algebraic fraction	分式,如 $\frac{2m}{m+n}$	cent	美分
algebraic term	代数项	center of a circle	圆心
aliquant	除不尽的	centigrade	摄氏
aliquot	除得尽的	central angle	圆心角
alternant	替代物,交替函数,交替行列式	chord	弦
alternate angle	内错角	circle	圆
altitude	盲	circle graph	饼图,扇面图,圆形图
amount to	合计	circular cylinder	圆柱体
angle	角	circumference	周长
angle bisector	角平分线	circumscribe	外切,外接
apiece	每个,每件,每人		5/1-90,5/11g
approximate	近似	clear an equation of fractions	将分式方程整式化
arc	弧	clockwise	顺时针方向
arithmetic mean	算术平均值	coefficient	系数
arithmetic progression (sequence)	等差数列	combination	组合: $C_n^m = \frac{n!}{m! (n-m)!}$
arm	直角三角形的股	common base triangles	同底三角形
average value	平均值(arithmetic mean)	common denominator	公分母
bar graph	柱状图	common difference	等差数列的公差
base	底边,乘幂的底数,例如 6 ⁴ 中的 6	common divisor	公约数
be equivalent to		common factor	公因子
another equation	与另一方程同等	common fraction	普通分数,简分数

common logarithm	常用对数	decimal	小数
common multiple	公倍数	decimal arithmetic	十进制运算
common ratio	公比	decimal fraction	纯小数
common year	平年,指365天的一年	decimal point	小数点
complementary angle	余角	decimal system, decimal scale	十进制
complementary function	余函数	decrease	减少
complete quadratic equation	完全二次方程,如 $x^2 + 4x + 4 = 0$	decrease by decrease to	减少了 减少到
complex fraction	繁分数	define	定义,化简
complex number	复数,如 T+i	denominator	定义, 化同 分母
complex root	复根	denote	代表,表示
composite number	合数,除1及本身外还有其他	depreciation	代表,表示 折旧
	因子的数	depth	深度
compound annual interest	年复利	diagonal	休 <u>皮</u> 对角线
compound interest	复利	diameter	直径
compounded interest	复利	difference	差
concave polygon	凹多边形	differential	微分
concentric circles	同心圆	digit	数字
cone	圆锥 (体积= $\frac{1}{3}\pi r^2 \cdot h$)	dime	一角,一角硬币
	, o ,	dimension	大小,度量(指长、宽、高等)
congruent	全等的	direct proportion	正比
consecutive even integer	连续偶数	discount	折扣
consecutive number	连续整数	distinct	不同的
consecutive odd integer	连续奇数	divide	除
constant	常数	divided evenly	被整除
convex polygon	凸多边形	dividend	被除数,红利
coordinate	坐标	divisible	可被整除的,如10 is divisible by 5
coordinate system	坐标系	division	除法
corresponding angle	同位角	division sign	除号÷,斜线分数号(/)
cross multiply	交叉相乘	divisor	因子,除数
cross section	横截面	down payment	直接付款
cube	立方体,立方数	dozen	一打,十二个
cube root	立方根	edge	棱
cubic metre	立方米	endpoint	端点
cumulative graph	累积图	equal	相等
decagon	十边形	equation	方程
260			

equation of the first		hyperbola	双曲线
degree	一次方程	hypotenuse	斜边
equilateral	等边形,相等的边	improper fraction	假分数,如
equilateral triangle	等边三角形	inch	英寸
equivalence relation	等价关系	included angle	夹角
equivalent equation	同解方程式,等价方程式	included side	夹边
equivalent fractions	等值分数	incomplete quadratic	
estimation	近似	equation	不完全二次方程,如:2x ² +5
even integer, even	偶数	increase	增加
number	坐玉玉八 45*6	increase by	增加了
evenly even integer	能再平分的数	increase to	增加到
evenly spaced	等间隔的	inequality	不等式
exponent		inference	推理,推论
extent	维数(A plane figure is 2-extent)	infinite decimal	无穷小数
exterior angle	外角	infinitesimal	无穷小
exterior angles on the same side of the	同旁外角	infinity	无穷大
transversal		inscribe	内切
factor	因子	inscribed triangle	内接三角形
factorable quadratic	可因式分解的二次方程	integer	整数
equation		intercalary year	闰年(366天)
factorial	阶乘	(leap year)	
factorization face of a solid	因式分解立体的面	intercept	截距
factorization	因式分解	interest	利息
Fahrenheit	华氏	interior angle	内角
finish line	华点线	intersect	相交
foot	英尺	inverse	倒数
fraction	分数	inverse function	反函数
gallon	加仑(1 gallon=4 quart)	inverse proportion	反比
geometric mean	几何平均数,如 [∜] abcd	irrational	无理数
geometric progression		irrational number	无理数
(sequence)	等比数列	isosceles triangle	等腰三角形
geometry	几何	least common denominator	最小公分母
graph	图	least common multiple	最大公倍数
graph theory	图论	least possible value	最小可能值
gross	十二打,箩;总额	leg	三角形的直角边,梯形的两条
heptagon	七边形	leg	不平行的边
hexagon	六边形	length	ĸ

less than	小于	multiply (times)	乘
like terms	同类项	natural logarithm	自然对数
line	直线	natural number	自然数
line graph	线图	negative number	负数
line segment	线段	negative whole number	负整数
linear	一次的,线性的	nickel	五美分硬币
linear algebra	线性代数	nonagon	九边形
linear equation	线性方程,一次方程	nonnegative	非负的
linear function	线性函数,一次函数	normal matrix	正规矩阵
linear transformation	线性变损,一次变换	null set (empty set)	空集
list price	标价	number line	数轴
literal coefficient	字母系数	number theory	数论
logarithm	对数	numerator	分子
margin	利润,赚头	numerical coefficient	数字系数
markup (markdown)	涨价(降价)	oblateness (ellipse)	椭圆形
maximum	极大值	oblique	斜三角形
mean	平均数	obtuse angle	钝角
median	中数	octagon	八角形
median of a triangle	三角形的中线	odd integer, odd number	奇数
meter	*	opposite	(直角三角形中的)对边
micron	微米	ordinal	序数
midpoint	中点	ordinary scale	十进制
minimum	最小值	ordinate	纵坐标
minor	子行列式,子式	origin	原点
minor axis	(椭圆的)短轴	original equation	原方程
minuend	被减数	overlap	重叠
minus (take away)	减,负,负数	parallel lines	平行线
minute	分(角的度量单位,60分	parallelogram	平行四边形
	=1 degree)	parentheses	括号
mixed decimal	混合小数	penny	一美分硬币
mixed number	带分数	pentagon	五边形
mode monomial	众数	per capita	每人
	单项式	percentage	百分比
multilateral	多边的	perimeter	周长
multinomial	多项式	permutation	排列 $\left(P_n^m = \frac{n!}{(n-m)!}\right)$
multiple	倍数	-	(n no .
multiplicand	被乘数	perpendicular	垂直,垂直的
multiplication	乘法	pie chart	饼图
multiplier 262	乘数	pint	品脱
(1) (1)			

plane	平面	recurring decimal	循环小数
plane geometry	平面几何	regular polygon	正多边形
polygon	多边形	regular prism	正棱柱
polynomial	多项式	regular pyramid	正棱锥
positive number	正数	regular solid (regular	正多面体
power	幂,乘方	polyhedron)	
prime factor	质因子	remainder	余数
prime number	质数	remote interior angle	不相邻内角
product	积	retail price	零售价
profit	利润	rhombus	菱形
progression	数列	right angle	直角
proper fraction	真分数	right circular cone	直圆锥
proper subset	真子集	right circular cylinder	直圆柱体
proportion	比例	right triangle	直角三角形
pyramid	角锥体	root	根
Pythagorean theorem	毕达哥拉斯定理,勾股定理	root sign	根号
quadrant	象限	round angle	周角
quadratic equation	二次方程	round off	四舍五入
quadrihedron	三角锥,四面体	round to/ round off	四舍五人
quadrilateral	四边形	scalenescalene cylinder	斜的,不等边的斜柱体
quantic	齐次多项式,多元齐次多项式	scalene triangle	不等边三角形
quart	夸脱 $\left(1 \operatorname{quart} = \frac{1}{4} \operatorname{gallon}\right)$	score	二十(指 20)
	=2 pint	segment of a circle	弧形
	-2 pm()	semicircle	半圆
quarter	四分之一		
quartic equation	四次方程	sequence	序列,数列
quotient	商	set	集合
radian	弧度	side	边长
radical sign	根号	sign	符号
radius	半径	similar terms	同类项
range	值域	simple (common) fraction	简分数
ratio	比率		24 7.1
rational number	有理数	simple interest	单利
real number	实数	simultaneous equations	联立方程组
reciprocal	倒数,倒数的	slope	斜率
rectangle	长方形	solid	立体
rectangular coordinate	直角坐标系	solid geometry	立体几何
rectangular hyperbola	等轴双曲线	solution	解,答案
rectangular solid	长方体	solution set	解集

sphere	球体 $\left($ 表面积 $4\pi r^2$,体积 $\frac{4}{3}\pi r^3 \right)$	transversal	截线
		trapezoid	梯形
square	正方形,平方	triangle	三角形
square measure	平方单位制	triangle inequality	三角不等式
square measure	平方制单位	trigonometric function	三角函数
square root	平方根	trigonometry	三角学
straight angle	平角,即180°角	trinomial	三项式
straight line	直线	union	
subtract	减		并集
subtrahend	被减数	unit	单位
sum	和	units	个位
supplementary angles	补角	variable	变量
surface area	表面积	vertex (vertices)	顶点
table	表格	vertical angle	对顶角
tangent	切线	volume	体积
tens	十位	vulgar fraction	普通分数,与 decimal fraction
tenths	十分位	-	相对
the extremes of	比例外项	weighted average	加权平均值
a proportion	山两江火	whole number	整数
the means of	比例内项	width	宽
a proportion		yard	码
tie	并列,打平	zero	零
to the nearest	四舍五入,精确到		

GMAT 常用数学符号及其英文表达

+	plus, positive
_	minus, negative
×	multiplied by, times
÷ (/)	divided by
=	is equal to, equals
\neq	not equal to
\approx	is approximately equal to, approximately equals
>	greater than
<	less than
\geq	equal to or greater than
\leq	equal to or less than
\gg	much greater than
«	much less than
\in	is a member of the set
\subset	is a subset of
()	round brackets, parentheses
	square brackets
{ }	braces
\sim	similar to
\leq	congruent to
\perp	perpendicular to, at right angles with
//	parallel to
\angle	angle
\odot	circle
AB	length of line from A to B
е	the base of natural logarithms, approx. 2.71828
π	pi; the ratio of the circumference of a circle to its diameter, approx. 3.14159
n!	factorial $n, n(n-1)(n-2)(n-3)\cdots 1$
x	the absolute value of x
x^2	x square; x squared; the square of x ; the second power of x ; x to the second power; x
	raised to the second power

3	x cube; x cubed; the cube of x ; x to the third power; the third power of x ; x raised to
x^{3}	the third power
x^{-10}	x to the minus tenth (tenth power)
\sqrt{x}	the square root of x , root x
$\sqrt[3]{x}$	the cube root of x
x^{n}	the nth power of x , x to the power n , x raised to the nth power, x to the nth power
$\frac{1}{x^n}$ $\frac{a^5}{\beta^2}$	one over x to the n
$\frac{\alpha^5}{\beta^2}$	α to the five over β squared
$x^{\frac{1}{n}}(\sqrt[n]{x})$	the nth root of x , x to the power one over n
y = f(x)	y is a function of x
a+b	a plus b ; the sum of a and b ; the total of a and b ; a added to b ; a increased by b ; a more than b ; a greater than b
a—b	a minus b ; a less b the difference of a and b ; from a subtract b ; a takes away b ; d decreased by b ; a diminished by b ; b is subtracted from a ; b less than a
$a \times b$	(a) (b), $a \cdot b$, a multiplied by b; the product of a and b; a times b
$a \div b$	a divided by b ; the quotient of a and b
a : b	the ratio of a to b
a : b : : c : d	a:b=c:d; a is to b as c is to d; the ratio of a to b equals the ratio of c to d
xX + yY = 1	little x times big X plus little y times big Y equals one
$\frac{x}{X} + \frac{y}{Y} = \frac{z}{Z}$	little x over big X plus little y over big Y equals little z over big Z
%	per cent
%0	per mille
$\frac{1}{2}$	a half; one half
$\frac{3}{4}$	three fourths; three quarters
$3\frac{1}{2}$	plus three and a half
0.035	decimal (point) naught three five
5.32	five point three two
4.0325	four point naught three two five, two five recurring
100℃	100 hundred degrees Centigrade
50°F	fifty degrees Fahrenheit

$a \in \mathbf{A}$	a is a member of set A
$a \notin \mathbf{A}$	a is not a member in set A
$A \subseteq B, A \subseteq B$	set A is contained in set B
A⊄B	set A is not contained in set B
$A \cap B$, $A \cdot B$	intersection of sets A and B
$A \bigcup B, A + B$	union of sets A and B

GMAT 常用数学公式

1. Permutation: $P_n^m = \frac{n!}{(n-m)!} = n(n-1) (n-2) \cdots (n-m+1)$ 2. Combination: $C_n^m = \frac{n!}{m! (n-m)!} = \frac{n(n-1)(n-2)\cdots(n-m+1)}{1 \times 2 \times 3 \cdots m}$ 3. Discount=Cost \times rate of Discount 4. The number of factors of $Z = x^a \cdot y^b \cdot z^c(x, y, z \text{ is prime number}), n = (a+1)(b+1)(c+1).$ 5. Quadratic formula $x = \frac{1}{2a}(-b \pm \sqrt{b^2 - 4ac})$ 6. Arithmetic progression $a_n = a_1 + (n-1)d$, $S_n = \frac{n(a_1 + a_n)}{2} = na_1 + \frac{n(n-1)}{2}d$ 7. Geometric progression $a_n = a_1 q^{(n-1)}$, $S_n = \frac{a_1 (1-q^n)}{1-q}$ 8. Distance between points (x, y) and (a, b) is $\sqrt{(x-a)^2(y-b)^2}$ 9. Area of triangle $=\frac{1}{2}bh$ 10. Special formula of area of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$, $s = \frac{1}{2}(a+b+c)$ 11. Area of rectangular = lw12. Area of parallelogram = bh13. Area of a rhombus = $\frac{\text{Product of two diagonals}}{2}$ 14. Area of a trapezoid = $\frac{(b_1+b_2)}{2}h$ 15. Volume of cubic solid = a^3 16. Volume of rectangular solid = $l \times w \times h$ 17. Volume of right circular cylinder = $\pi r^2 \cdot h$ 18. Volume of right circular cone = $\frac{1}{3}\pi r^2 \cdot h$ 19. Volume of ball $=\frac{4}{3}\pi r^3$

Measurements

Length	1 mile(mi)=1,760 yards=5280 feet
	1 yard(d)=3 feet
	1 foot(ft)=12 inches(in)
Area:	1 square yard(Sq yd)=9 square feet(Sq ft)
	1 square foot(Sq ft)=144 square inches(Sq in)
Time:	1 decade=10 years
	1 year=52 weeks
	1 year=365 days
	1 week=7 days
	1 days=24 hours
	1 hour=60 minutes
	1 minute=60 seconds
Volume	:1 quart(qt) (夸脱)= 2 pints(pt)(品脱)
	1 gallon(gal 加仑)=4 quarts(qt)
	1 bushel(bu)(蒲式耳)=4 pecks(pk)(配克)
	1 pint=2 cups
Weight	: 1 ton(T)=2,000 pounds
	1 pound(lp)=16 ounces(oz)
	1 ounce=16 drams(打兰)