习题篇 03

小树老师的数学课

The arithmetic mean and standard deviation of a certain normal distribution are 13.5 and 1.5, respectively. What value is exactly 2 standard deviations less than the mean?

A 10.5

B 11.0

C 11.5

D 12.0

E 12.5

A bar over a sequence of digits in a decimal indicates that the sequence repeats indefinitely. What is the value of $(10^4 - 10^2)(0.00\overline{12})$?

A 0

B $0.\overline{12}$

0.00121212...

C 1.2

12.121212...

D 10

0.121212

E 12

For the positive numbers, n, n + 1, n + 2, n + 4, and n + 8, the mean is how much greater than the median

A 0

B 1

C n+1

D n+2

E n+3

If Q is an odd number and the median of Q consecutive integers is 120, what is the largest of these integers?

- **A** $\frac{Q-1}{2} + 120$
- **B** $\frac{Q}{2} + 119$
- **c** $\frac{Q}{2} + 120$
- **D** $\frac{Q+119}{2}$
- **E** $\frac{Q+120}{2}$

If m is the average (arithmetic mean) of the first 10 positive multiples of 5 and if M is the median of the first 10 positive multiples of 5, what is the value of M-m?

A 5

B 0

55×25×3 5×10

Mean=55/2

D 25 Median= $(5 \times 5 + 5 \times 6) /2 = 55/2$

E 27.5

If a, b, c, and d are positive numbers, is $\frac{a}{b} < \frac{c}{d}$?

ad<bc?

$$(1) \ 0 < \frac{(c-a)}{(d-b)}$$

(c-a)(d-b) > 0 cd-cb+ab>ad

$$(2)(\frac{ad}{bc})^2 < \frac{ad}{bc}$$

ad/bc < 1 ad < bc S

- A Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
- **B** Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
- **C** BOTH statement TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
- **D** EACH statement ALONE is sufficient.
- E Statements (1) and (2) TOGETHER are NOT sufficient.

If a=-0.3 which of the following is true?

A
$$a < a^2 < a^3$$

B
$$a < a^3 < a^2$$

C
$$a^2 < a < a^3$$

D
$$a^2 < a^3 < a$$

E
$$a^3 < a < a^2$$

When positive integer x is divided by positive integer y, the remainder is 9. If $\frac{x}{y} = 96.12$, what is the value of y?

A 96

B 75

C 48

D 25

E 12

If n is an integer and 2 < n < 6, what is the value of n?

(1)n is a factor of 15.

(2)n is a factor of 21.

A Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.

B Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.

C BOTH statement TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.

D EACH statement ALONE is sufficient.

E Statements (1) and (2) TOGETHER are NOT sufficient.

What is the remainder, after division by 100, of 7^{10} ?

A 1
B 7
C 43
D 49
E 70

In the xy-plane, region R consists of all the points (x, y) such that 2x + 3y = 6. Is the point (r, s) in region R?

$$(1)3r + 2s = 6$$

$$(2)r = 3$$
 and $s = 2$

- A Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
- **B** Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
- C BOTH statement TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
- **D** EACH statement ALONE is sufficient.
- **E** Statements (1) and (2) TOGETHER are NOT sufficient.

$$\frac{(0.0036)(2.8)}{(0.04)(0.1)(0.003)} =$$

A 840.0

分子36×28×10⁻⁵ 3×28 分母4×1×3×10⁻⁶ 10⁻¹

B 84.0

C 8.4

D 0.84

E 0.084

If d is the standard deviation of x, yand z, what is the standard deviation of x + 5, y + 5, and z + 5?

A d

B 3d

C 15d

D d + 5

E d + 15

If n = 4p, where p is a prime number greater than 2, how many different positive even divisors does n have, including n?

- **A** Two
- **B** Three
- **C** Four
- **D** Six
- **E** Eight

if
$$\frac{1}{x} - \frac{1}{x+1} = \frac{1}{x+4}$$
 then x could be

A 0

B -1

C -2 -1/2+1=1/2 ½ √

D -3

E -4

List T consists of 30 positive decimals, none of which is an integer, and the sum of the 30 decimals is S. The estimated sum of the 30 decimals, £, is defined as follows. Each decimal in T whose tenths digit is even is rounded up to the nearest integer, and each decimal in T whose tenths digit is odd is rounded down to the nearest integer; E is the sum of the resulting integers. If $\frac{1}{3}$ of the decimals in T have a tenths digit that is even, which of the following is a possible value of E - S?

I.-16

10个数 tenths 偶数 进位

11.6

0.2 +0.8 0.8+0.2 min plus +2 max plus +8

III.10

20个数 tenths odd down (舍)

A I only

0.1-0.1 0.9-0.9 min m -2 max m -18

B I and II only

E-S max 8-2=6

C I and III only

min 2-18=-12

D II and III only

E I,II, and III