

第十三章: 启动引导与修复

尚硅谷云计算 Linux 课程

版本: V1.0

讲师:沈超

一、 系统运行级别

1、运行级别

Linux 默认有7个运行级别

LIIIUX 测()(月	1 1 运门级所
运行级别	含 义
0	关机
1	单用户模式,可以想象为 windows 的安全模式,主要用于系统修复
2	不完全的命令行模式,不含 NFS 服务
3	完全的命令行模式,就是标准字符界面
4	系统保留
5	图形模式
6	重启动

表 13-2 运行级别

在 Linux 系统中可以使用 runlevel 命令来查看系统的运行级别,命令如下:

[root@localhost ~]# runlevel

N 3

#N代表进入这个级别前,上一个是哪个级别。3代表当前级别

在这个命令的结果中,"N3"中的N代表进入这个级别前,上一个级别是什么,3代表当前级别。 "N"就是None的意思,也就是说系统是开机直接进入的3运行级别,没有上一个运行级别。那如果 是从图形界面切换到字符界面的话,再查看运行级别,就应该是这样的:

[root@localhost ~]# runlevel

5 3

#代表是由5级别进入的3级别

那么可以手工改变当前的运行级别吗?当然可以了,只要使用 init 命令(注意着不是 init 进程) 即可,命令如下:

[root@localhost ~]# init 5

#进入图形界面,当然要已经安装了图形界面才可以

[root@localhost ~]# init 0

#关机

[root@localhost ~]# init 6

#重启动

不过要注意使用 init 命令关机和重启动,并不是太安全,容易造成数据丢失。所以推荐大家还 是使用 shutdown 命令进行关机和重启吧!

2、系统默认运行级别

云计算 Linux 课程系列

知道了运行级别的作用,我们回到系统启动过程中来。/etc/init/rcS.conf 配置文件调用 /etc/inittab 配置文件的目的就是为了确定系统的默认运行级别,也就是系统一开机后会进入那个运 行级别。这个文件的内容如下: [root@localhost ~]# vim /etc/inittab # inittab is only used by upstart for the default runlevel. # ADDING OTHER CONFIGURATION HERE WILL HAVE NO EFFECT ON YOUR SYSTEM. # System initialization is started by /etc/init/rcS.conf #系统会先调用/etc/init/rcS.conf # Individual runlevels are started by /etc/init/rc.conf #再调用/etc/init/rc.conf,在不同的运行级别启动不同的服务 # Ctrl-Alt-Delete is handled by /etc/init/control-alt-delete.conf #通过这个配置文件判断 Ctrl+Alt+Delete 热启动键是否可用 # Terminal gettys are handled by /etc/init/tty.conf and /etc/init/serial.conf, # with configuration in /etc/sysconfig/init. #判断系统可以启动的本地终端数量,及终端的基本设置(如颜色) # For information on how to write upstart event handlers, or how # upstart works, see init(5), init(8), and initctl(8). # Default runlevel. The runlevels used are: # 0 - halt (Do NOT set initdefault to this) 1 - Single user mode # # 2 - Multiuser, without NFS (The same as 3, if you do not have networking) # 3 - Full multiuser mode # 4 - unused 5 - X11 6 - reboot (Do NOT set initdefault to this) #很眼熟吧,就是刚刚的0-6的运行级别的说明 id:3:initdefault: #这就是系统的默认运行级别,也就是系统开机后直接进入哪个运行级别 注意这里的默认运行级别只能写3或5,其他的级别要不就是关机重启,要不就是保留或单用户, 都不能作为系统默认运行级别的。 3、 /etc/rc. d/rc. local 文件 这个配置文件会在用户登陆之前读取,这个文件中写入什么命令,在每次系统启动时都会执行一 次。也就是说,我如果有任何需要在系统启动就运行的工作,只需要写入/etc/rc.d/rc.local 这个配 置文件即可。这个文件内容如下: [root@localhost ~]# 11 /etc/rc.local lrwxrwxrwx. 1 root root 13 4 月 10 21:46 /etc/rc. local -> rc. d/rc. local #有个链接文件,两个文件修改哪一个都可以

[root@localhost ~]# vi /etc/rc.d/rc.local

#!/bin/sh

#

This script will be executed *after* all the other init scripts.

You can put your own initialization stuff in here if you don't

want to do the full Sys V style init stuff.

touch /var/lock/subsys/local
#默认会 touch 这个文件,每次系统启动时 touch 这个文件,这个文件的修改时间就是系统的启动时间了。
/etc/rc.d/init.d/httpd start
#如果写入 RPM 包安装的 apache 的启动命令, apache 服务就会开机时自动启动了。

二、启动引导程序(Boot Loader)

早期的 Lilo 引导程序已经不是很常见了, grub 相比来讲有很多优势, 主要有:

- ◆ 支持更多的文件系统;
- ♦ grub 的主程序可以直接在文件系统中查找内核文件;
- ◆ 在系统启动时,可以利用 grub 的交互界面编辑和修改启动选项;
- ◆ 可以动态的修改 grub 的配置文件,这样在修改配置文件之后不需要重新安装 grub,而只需 要重新启动就可以生效了。
- 1 /boot/grub 目录

grub 的作用有以下几个:第一是加载操作系统的内核;第二是拥有一个可以让用户选择的菜单, 来选择到底启动哪个系统;第三还可以调用其他的启动引导程序,来实现多系统引导。

```
grub 的配置文件主要是放置在/boot/grub/目录中的,我们来看看这个目录下到底有哪些文件吧:
```

[root@localhost ~]# cd /boot/grub/ [root@localhost grub]# 11 -h 总用量 274K -rw-r--r--. 1 root root 63 4 月 10 21:49 device.map #grub 中硬盘的设备文件名与系统的设备文件名的对应文件 -rw-r--r--. 1 root root 14K 4 月 10 21:49 e2fs stage1 5 #ext2/ext3 文件系统的 stage 1.5 文件 -rw-r--r--. 1 root root 13K 4 月 10 21:49 fat stage1 5 #FAT 文件系统的 stage 1.5 文件 -rw-r--r--. 1 root root 12K 4 月 10 21:49 ffs_stage1_5 #FFS 文件系统的 stage 1.5 文件 -rw-----. 1 root root 737 4月 10 21:49 grub.conf #grub 的配置文件 -rw-r--r--. 1 root root 12K 4 月 10 21:49 iso9660 stage1 5 #iso9660 文件系统的 Stage 1.5 文件 -rw-r--r--. 1 root root 13K 4 月 10 21:49 jfs stage1 5 #jfs 文件系统的 Stage 1.5 文件 lrwxrwxrwx. 1 root root 11 4 月 10 21:49 menu.lst -> ./grub.conf #grub 的配置文件。和 grub. conf 是软链接,所以两个文件修改哪个都可以 -rw-r--r--. 1 root root 12K 4 月 10 21:49 minix stage1 5 #minix 文件系统的 Stage 1.5 文件

-rw-r--r-. 1 root root 15K 4 月 10 21:49 reiserfs_stage1_5 #reiserfs 文件系统的 Stage 1.5 文件 -rw-r--r-. 1 root root 1.4K 11 月 15 2010 splash.xpm.gz #系统启动时,grub 程序的背景图像 -rw-r--r-. 1 root root 512 4 月 10 21:49 stage1 #安装到引导扇区中的 stage1 的备份文件 -rw-r--r-. 1 root root 124K 4 月 10 21:49 stage2 #stage2 的备份文件 -rw-r--r-. 1 root root 12K 4 月 10 21:49 ufs2_stage1_5 #UFS 文件系统的 Stage 1.5 文件 -rw-r--r-. 1 root root 12K 4 月 10 21:49 vstafs_stage1_5 #vstafs 文件系统的 Stage 1.5 文件 -rw-r--r-. 1 root root 14K 4 月 10 21:49 xfs_stage1_5 #vstafs 文件系统的 Stage 1.5 文件

其实这个目录中主要就是 grub 的配置文件和各种文件系统的 stage1.5 文件。不过 grub 的配置 文件有两个/boot/grub/grub.conf 和/boot/grub/menu.lst,这两个配置文件是软链接,所以修改哪 一个都可以,我个人更习惯为 grub.conf 这个文件。

2 Grub 的配置文件

1) 、在 grub 中分区的表示方法

硬盘	分区	Linux 中设备文件名	Grub 中设备文件名
第一块 SCSI 硬盘	第一个主分区	/dev/sda1	hd(0,0)
	第二个主分区	/dev/sda2	hd(0,1)
	扩展分区	/dev/sda3	hd(0,2)
	第一个逻辑分区	/dev/sda5	hd(0,4)
	第一个主分区	/dev/sdb1	hd(1,0)
笠一块 CCCI 硬舟	第二个主分区	/dev/sdb2	hd(1,1)
另→ J 3031 硬盘	扩展分区	/dev/sdb3	hd(1,2)
	第一个逻辑	/dev/sdb5	hd(1,4)

2)、grub的配置文件

[root@localhost ~]# vi /boot/grub/grub.conf
default=0
timeout=5
splashimage=(hd0,0)/grub/splash.xpm.gz
hiddenmenu
#以上为grub 整体设置

title CentOS (2.6.32-279.el6.i686)

root (hd0, 0)
kernel

/vmlinuz-2.6.32-279.el6.i686

 \mathbf{ro}

root=UUID=b9a7a1a8-767f-4a87-8a2b-a535edb362c9 rd_NO_LUKS KEYBOARDTYPE=pc KEYTABLE=us rd_NO_MD crashkernel=auto LANG=zh_CN.UTF-8 rd_NO_LVM rd_NO_DM rhgb quiet

云计算 Linux 课程系列

#以上4行为一行,只是内容过多的自动换行

initrd /initramfs-2.6.32-279.el6.i686.img

♦ default=0

默认启动第一个系统。也就是如果在等待时间结束后,用户没有选择进入哪一个系统,那么 系统会默认进入第一个系统。如果有多系统并存,那么每个系统都会有自己的 title 字段,如果想要 默认进入第二个系统,这里就可以设为 default=1。

 \diamond timeout=5

等待时间,默认是5秒。也就是进入系统时,如果5秒内用户没有按下任意键,那么系统会进入 default 字段定义的系统。当然可以手工修改这个等待时间,如果 timeout=0则不会等待直接进入系统, timeout=-1则是一直等待用户输入,而不会自动进入系统。

♦ splashimage=(hd0, 0)/grub/splash.xpm.gz

这里是指定 grub 启动时的背景图像文件的保存位置的。记得 CentOS 6.x 启动时后台的蓝色 图像吧,就是这个文件的作用哦。不过这个文件具体在哪里啊?已经说过了 hd (0,0)代表第一个硬 盘的第一个分区,而超哥的系统安装时/boot 分区就是第一个分区,所以这个背景图像的实际位置就 是/boot/grub/splash.xpm.gz。

♦ hiddenmenu

隐藏菜单。启动时默认只能看到读秒,而不能看到菜单,如果想要看到菜单需要按任意键。 如果注释了这句话,那么启动时就能直接看到菜单了。

以上就是 grub 的整体设置,下面我们介绍 CentOS 系统的启动设置:

♦ title CentOS (2.6.32-279.el6.i686)

title 就是标题的意思,也就是说在 title 后面写入的是什么,那么系统启动时在 grub 的启动菜单中看到的就是什么。

◇ root (hd0, 0) 是指启动程序的保存分区。这里要注意啊,这个 root 并不是管理员哦。在我的系统中,/boot 分区是独立划分的,而且设备文件名为/dev/sda1,所以在 grub 中,就被描述为 hd(0,0)。

☆ kernel /vmlinuz-2.6.32-279.el6.i686 ro root=UUID=b9a7a1a8-767f-4a87-8a2b-a535edb362c9 rd_NO_LUKS KEYBOARDTYPE=pc KEYTABLE=us rd_NO_MD crashkernel=auto LANG=zh_CN.UTF-8 rd_NO_LVM rd_NO_DM rhgb quiet

- ▶ /vmlinuz-2.6.32-279.el6.i686:指定了内核文件的位置,这里的/是指/boot分区。
- ▶ ro: 启动时以只读方式挂载根文件系统,这是为了不让启动过程影响磁盘内的文件系统。
- ▶ root=UUID=b9a7a1a8-767f-4a87-8a2b-a535edb362c9:指定根文件系统的所在位置。这里和以前的Linux版本不太一样了,不再是通过分区的设备文件名或卷标号来指定,而是通过分区的UUID来进行指定。那么如何查询分区的UUID号呢?方法有很多种,最简单的办法就是查询/etc/fstab文件,命令如下:

[root@localhost ~]# cat /etc/fstab | grep "/ " UUID=b9a7a1a8-767f-4a87-8a2b-a535edb362c9 / ext4 defaults 1 1

可以看到"/"分区的 UUID 和 kernel 行中的 UUID 是匹配的。注意一下, grep 后的"/",在/后是有空格的。

▶ rd_NO_LUKS: 禁用 LUKS, LUKS 用于给磁盘加密。

- ▶ rd_NO_MD: 禁用软 RAID。
- ▶ rd_NO_DM: 禁用硬 RAID。
- ▶ rd_NO_LVM: 禁用 LVM。以上禁用都只是在启动过程中禁用,是为了加速系统启动的。
- ▶ KEYBOARDTYPE=pc KEYTABLE=us: 键盘类型。
- ▶ crashkernel=auto: 自动为 crashkernel 预留内存。
- ▶ LANG=zh_CN.UTF-8:语言环境
- ▶ rhgb: (redhat graphics boot)用图片来代替启动过程中的文字信息。启动完成 之后可以使用 dmesg 命令来查看这些文字信息。
- ▶ quiet: 隐藏启动信息,只显示重要信息。
- ◆ initrd /initramfs-2.6.32-279.el6.i686.img: 指定了 initramfs 内存文件系统镜像文件 的所在位置。
- 3 grub 加密

[root@localhost ~]# grub-md5-crypt
Password:

Retype password:

#输入两次密码

\$1\$Y84LB1\$8tMY2PibScmuOCc8z8U35/

#生成加密密码字串

这样就可以生成加密密码字串,这个字串是采用 md5 加密的,就是你的密码经 md5 编码之后的。 我们会利用这个加密密码字串来加密 grub 配置文件。

grub 菜单整体加密

如果只是加密单个启动菜单,grub 的编辑模式是不能锁定的,还是可以按"e"键进入编辑模式。 而且进入编辑模式后,是可以删除 password 字段的,再按"b"(boot 启动)键就可以不用密码直 接进入系统。这时就需要给 grub 菜单整体加密了,整体加密后,如果想进入 grub 编辑界面必须输入 正确的密码。加密方法其实只是把 password 字段换个位置而已,具体方法如下:

[root@localhost ~]# vi /boot/grub/grub.conf

default=0

timeout=5

password --md5 \$1\$Y84LB1\$8tMY2PibScmu0Cc8z8U35/

#password 选项放在整体设置处。

splashimage=(hd0, 0)/grub/splash.xpm.gz

但是这样加密,启动 CentOS 时,是不需要密码就能正常启动的。那我如果既需要 grub 的整体加密,又需要系统启动时输入正确的密码。那应该怎么做呢?很简单,方法如下:

default=0
timeout=5

password ---md5 \$1\$Y84LB1\$8tMY2PibScmuOCc8z8U35/

splashimage=(hd0, 0)/grub/splash.xpm.gz

hiddenmenu

title CentOS (2.6.32-279.e16.i686)

lock

#在 title 字段,加入 lock。代表锁死,如果不输入正确的 grub 密码也不能启动

三、 系统修复模式

1 单用户模式

我们先来看看单用户模式是怎么使用的吧。Linux 的单用户模式有些类似 Windows 的安全模式, 只启动最少的程序用于系统修复。在单用户模式(运行级别为1)中,Linux 引导进入根 shell,网络 被禁用,只有少数进程运行。单用户模式可以用来修改文件系统损坏、还原配置文件、移动用户数据 等。

1)、 如何进入单用户模式

GNU GRUB version 0.97 (638% lower / 640960% upper memory)	
CentOS (2.6.32-279.e16.i686)	
Use the ↑ and ↓ keys to select which entry is highlighted. Press enter to boot the selected 05. (e' to edit the commands before booting, 'a' to modify the kernel arguments before booting, or 'c' for a command-line.	

图 13-7 grub 菜单界面

2)、 单用户模式常见的错误修复

我们已经进入单用户模式了,那么我们在单用户模式中主要可以修复哪些系统错误呢?我们举几 个例子吧。

◆ 遗忘 root 密码

这是管理员最容易犯的错误,那么应该如何修复呢?当然是使用单用户模式进行修复了,进入单 用户模式最大的特点就是不需要输入用户名和密码就能登录。既然已经登录了单用户模式,那么直接 给 root 用户设定新密码即可。命令如下:

[root@localhost /]# passwd root

◆ 修改系统默认运行级别

如果我们把系统的默认运行级别修改错误,比如改为了0或6,系统就不能正常启动了。这时也可以利用单用户模式进行修复,只要直接修改默认运行级别配置文件/etc/inittab,把系统默认运行级别修改回来即可。命令如下:

[root@localhost /]# vi /etc/inittab

id:3:initdefault:

#把默认运行级别修改为3或5。注意系统的默认运行级别只能使用3或5

绝大多数系统错误都可以通过单用户模式进行修复,理论上是只要能够进入单用户模式,那么系 统错误就可以被单用户模式修复。当然判断系统到底是哪里出现了问题,是需要不断的经验积累的。

2 光盘修复模式

1)、 如何进入光盘修复模式

云计算 Linux 课程系列

如何进入光盘修复模式呢?首先你需要有系统光盘,或系统修复光盘。我们这里只需要把 CentOS 6.x 的第一张光盘放入光驱,然后重启系统。修改 BIOS 的启动顺序,让系统从光盘启动(具体方法参考系统安装章节)。就会看到如图 13-11 所示的光盘启动界面:

图 13-11 光盘启动界面

2)、 光盘修复模式常见的错误修复

我们在光盘修复模式中主要可以修复什么错误呢?其实能在单用户模式中修复的错误,都能在光 盘修复模式中修复。当然还可以修复一些在单用户模式下无法修复的错误,我们举几个例子。

◆ 重要系统文件丢失,导致系统无法启动

如果系统中的重要系统文件丢失,当然会导致系统无法正常启动。这时也可以利用光盘修复模式 修复。我们假设把/etc/inittab 文件丢失了,我们通过系统启动过程知道这个文件是定义系统默认运 行级别的,如果丢失了这个文件,系统当然不能正常启动,这时就需要进入光盘修复模式中了。然后 需要利用 chroot 命令。命令格式如下:

[root@localhost ~]# chroot 目录名

chroot 命令的作用是 "change root directory" 改变系统根目录的意思。也就是可以把根目录 暂时移动到某个目录当中。我们是通过光盘启动的光盘修复模式,所以我们现在所在的根目录不是真 正的系统根目录,而是光盘的模拟根目录。系统根目录被当成外来设备放在了/mnt/sysimage/目录中。 这时就需要 chroot 命令把我们现在的所在目录移动成真正的系统根目录。命令如下: bash-4.1# chroot /mnt/sysimage

这条命令执行之后,当前的根目录就已经是真正的系统根目录了。如果系统有任何错误都可以直接修复。比如/etc/inittab文件丢失了。这时如果我们曾经备份过系统重要文件,只需要把备份文件重新复制到/etc/目录下即可。如果没有备份的文件,就需要从 rpm 包中提取 inittab 文件,然后复制了。具体命令如下:

bash-4.1# chroot /mnt/sysimage #改变主目录 sh-4.1# cd /root #进入 root 目录。因为默认进入的是/目录,如果不进入 root,一会提取的 inittab 文件会 #报错 sh-4.1# rpm -qf /etc/inittab initscripts-9.03.31-2.el6.centos.i686 #查询下/etc/inittab 文件属于哪个包。如果系统中文件丢失不能查询,需要通过其他 Linux #系统查询 sh-4.1# mkdir /mnt/cdrom

更多云计算-Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网

#建立挂载点 sh-4.1# mount /dev/sr0 /mnt/cdrom #挂载光盘 sh-4.1# rpm2cpio /mnt/cdrom/Packages/initscripts-9.03.31-2.el6.centos.i686.rpm | cpio -idv ./etc/inittab #提取 inittab 文件到当前目录 sh-4.1# cp etc/inittab /etc/inittab #复制 inittab 文件到指定位置

注意此命令执行时不能将文件直接恢复至/etc 目录,只能提取到当前目录下,且恢复的文件名称 所在路径要写完整的绝对路径。提取文件成功后,将其复制到根分区所在的/mnt/sysimage 目录下相 应位置即可。