

Networking(neutron)

安装并配置controller节点

- 配置先决条件
- 安装网络服务组件
- 配置网络服务组件
- 配置Modular Layer2(ML2)插件
- 配置计算服务使用Neutron
- 完成安装
- 验证

配置先决条件

1、创建数据库,完成下列步骤: a.使用root用户连接mysql数据库

mysql -u root -p

b.创建neutron数据库

CREATE DATABASE neutron;

c.创建数据库用户neutron,并授予neutron用户对neutron数据库完全控制权限 GRANT ALL PRIVILEGES ON neutron.* TO 'neutron'@'localhost' IDENTIFIED BY '*NEUTRON_DBPASS*';

GRANT ALL PRIVILEGES ON neutron.* TO 'neutron'@'%' IDENTIFIED BY '*NEUTRON_DBPASS*';

d.退出数据库连接

2、执行admin环境变量脚本

source admin-openrc.sh

- 3、在认证服务中创建网络服务的认证信息,完成下列步骤:
 - a.创建neutron用户

keystone user-create --name neutron --pass NEUTRON_PASS

+ Property +	+
email enabled id name username +	True 7799abc098144151b7b2b62c001729fb neut ron neut ron

b.连接neutron用户到serivce租户和admin角色

keystone user-role-add --user neutron --tenant service --role admin

c.创建neutron服务

keystone service-create --name neutron --type network --description "OpenStack

Networking"	+ Property +	+Value	+ +
	description enabled id	OpenStack Networking True 60d88f5b0a26441cb3664f6a8cc8ce34	
	name type	neutron network	İ
	+	+	+

d.创建neutron服务端点

keystone endpoint-create \

--service-id \$(keystone service-list | awk '/ network / {print \$2}') \

- --publicurl http://controller.nice.com:9696 \
- --adminurl http://controller.nice.com:9696 \
- --internalurl http://controller.nice.com:9696 \ --region regionOne

安装网络服务组件

yum install openstack-neutron openstack-neutron-ml2 python-neutronclient which

配置网络服务组件

编辑/etc/neutron/neutron.conf文件,并完成下列操作:

a.编辑[database]小节,配置数据库访问

[database]

. . .

```
...
connection = mysql://neutron:NEUTRON_DBPASS@controller.nice.com/neutron
b.编辑[DEFAULT]小节,配置RabbitMQ消息队列访问:
[DEFAULT]
```

```
rpc_backend = rabbit
rabbit_host = controller.nice.com
rabbit_password = RABBIT_PASS
```



```
c.编辑[DEFAULT]和[keystone_authtoken]小节,配置认证服务访问:
[DEFAULT]
```

```
auth_strategy = keystone
[keystone_authtoken]
```

```
auth_uri = http://controller.nice.com:5000/v2.0
identity_uri = http://controller.nice.com:35357
admin_tenant_name = service
admin_user = neutron
admin_password = NEUTRON_PASS
```

d.编辑[DEFAULT]小节, 启用Modular Layer2(ML2)插件,路由服务和重叠IP地址功能:

[DEFAULT]

```
…
core_plugin = ml2
service_plugins = router
a康永云边等中的ppin数据s-前端uepython人工智能资料下载,可百度访问:尚硅谷官网
```


e.编辑[DEFAULT]小节,配置当网络拓扑结构发生变化时通知计算服务: [DEFAULT]

```
...
notify_nova_on_port_status_changes = True
notify_nova_on_port_data_changes = True
nova_url = http://controller.nice.com:8774/v2
nova_admin_auth_url = http://controller.nice.com:35357/v2.0
nova_region_name = regionOne
nova_admin_username = nova
nova_admin_tenant_id = SERVICE_TENANT_ID
nova_admin_password = NOVA_PASS
```

注:可通过keystone tenant-get service,获取service租户ID。

f.(可选)在[DEFAULT]小节中配置详细日志输出。方便排错。 [DEFAULT]

...

verbose = True

配置Modular Layer 2 (ML2) plug-in

编辑/etc/neutron/plugins/ml2/ml2_conf.ini文件,并完成下列操作:

a.编辑[ml2]小节,启用flat和generic routing encapsulation (GRE)网络类型驱动,配置 GRE租户网络和OVS驱动机制。

[ml2]

```
type_drivers = flat,gre
tenant_network_types = gre
mechanism_drivers = openvswitch
```

b.编辑[ml2_type_gre]小节,配置隧道标识范围:

[ml2_type_gre]

```
• • •
```

tunnel_id_ranges = 1:1000

c.编辑[securitygroup]小节, 启用安全组, 启用ipset并配置OVS防火墙驱动:

[securitygroup]

```
enable_security_group = True
enable_ipset = True
firewall_driver = neutron.agent.linux.iptables_firewall.OVSHybridIptablesFirewallDriver
```


配置计算服务使用Neutron

默认情况下,计算服务使用传统网络,我们需要重新配置。 编辑/etc/nova/nova.conf文件,并完成下列操作:

a.编辑[DEFAULT]小节,配置API接口和驱动程序: [DEFAULT]

```
...
network_api_class = nova.network.neutronv2.api.API
security_group_api = neutron
linuxnet_interface_driver = nova.network.linux_net.LinuxOVSInterfaceDriver
firewall_driver = nova.virt.firewall.NoopFirewallDriver
```


b.编辑[neutron]小节,配置访问参数: [neutron]

```
...
url = http://controller.nice.com:9696
auth_strategy = keystone
admin_auth_url = http://controller.nice.com:35357/v2.0
admin_tenant_name = service
admin_username = neutron
admin_password = NEUTRON_PASS
```


完成配置

1、为ML2插件配置文件创建连接文件。

In -s /etc/neutron/plugins/ml2/ml2_conf.ini /etc/neutron/plugin.ini

2、初始化数据库

su -s /bin/sh -c "neutron-db-manage --config-file /etc/neutron/neutron.conf --config-file /etc/neutron/plugins/ml2/ml2_conf.ini upgrade juno" neutron

3、重新启动计算服务

systemctl restart openstack-nova-api.service openstack-nova-scheduler.service openstack-nova-conductor.service

4、启动网络服务并配置开机自动启动

systemctl enable neutron-server.service
systemctl start neutron-server.service

1、执行admin环境变量脚本

source admin-openrc.sh

2、列出加载的扩展模块,确认成功启动neutron-server进程。

neutron ext-list

+ alias +	+
security-group l3_agent_scheduler ext-gw-mode binding provider agent quotas dhcp_agent_scheduler l3-ha multi-provider external-net router allowed-address-pairs extraroute extra_dhcp_opt dvr	security-group L3 Agent Scheduler Neutron L3 Configurable external gateway mode Port Binding Provider Network agent Quota management support DHCP Agent Scheduler HA Router extension Multi Provider Network Neutron external network Neutron external network Neutron L3 Router Allowed Address Pairs Neutron Extra Route Neutron Extra DHCP opts Distributed Virtual Router

安装并配置network节点

- 配置先决条件
- 安装网络组件
- 配置网络通用组件
- 配置Modular Layer 2 (ML2) plug-in
- 配置Layer-3 (L3) agent
- 配置DHCP agent
- 配置metadata agent
- 配置Open vSwitch (OVS)服务
- 完成安装
- 验证

1、编辑/etc/sysctl.conf文件,包含下列参数:

net.ipv4.ip_forward=1
net.ipv4.conf.all.rp_filter=0
net.ipv4.conf.default.rp_filter=0

2、使更改生效

sysctl -p

安装网络组件

yum install openstack-neutron openstack-neutron-ml2 openstack-neutron-openvswitch

配置网络通用组件

网络通用组件配置包含认证机制,消息队列及插件。

编辑/etc/neutron/neutron.conf文件并完成下列操作:

a.编辑[database]小节,注释任何connection选项。因为network节点不能直接连接数据库。

b.编辑[DEFAULT]小节,配置RabbitMQ消息队列访问

[DEFAULT]

```
...
rpc_backend = rabbit
rabbit_host = controller.nice.com
rabbit_password = RABBIT_PASS
```


c.编辑[DEFAULT]和[keystone_authtoken]小节,配置认证服务访问: [DEFAULT]

```
...
auth_strategy = keystone
```

```
[keystone_authtoken]
```

```
...
auth_uri = http://controller.nice.com:5000/v2.0
identity_uri = http://controller.nice.com:35357
admin_tenant_name = service
admin_user = neutron
admin_password = NEUTRON_PASS
```


d.编辑[DEFAULT]小节,启用Modular Layer2(ML2)插件,路由服务和重叠IP地址功能: [DEFAULT]

```
...
core_plugin = ml2
service_plugins = router
allow_overlapping_ips = True
```

e.(可选)在[DEFAULT]小节中配置详细日志输出。方便排错。 [DEFAULT]

• • •

verbose = True

配置Modular Layer 2 (ML2) plug-in

ML2插件使用Open vSwitch (OVS)机制为虚拟机实例提供网络框架。 编辑/etc/neutron/plugins/ml2/ml2_conf.ini文件并完成下列操作:

a.编辑[ml2]小节,启用flat和generic routing encapsulation (GRE)网络类型驱动,配置 GRE租户网络和OVS驱动机制。

[ml2]

. . .

```
type_drivers = flat,gre
tenant_network_types = gre
mechanism_drivers = openvswitch
```

b.编辑[ml2_type_flat]小节,配置外部网络:

[ml2_type_flat]

```
• • •
```

flat_networks = external


```
c.编辑[ml2_type_gre]小节,配置隧道标识范围:
```

[ml2_type_gre]

```
• • •
```

```
tunnel_id_ranges = 1:1000
```

d.编辑[securitygroup]小节, 启用安全组, 启用ipset并配置OVS防火墙驱动:

[securitygroup]

```
...
enable_security_group = True
enable_ipset = True
firewall_driver = neutron.agent.linux.iptables_firewall.OVSHybridIptablesFirewallDriver
```



```
e.编辑[ovs]小节,配置Open vSwitch (OVS) 代理
```

[ovs]

```
...
local_ip = INSTANCE_TUNNELS_INTERFACE_IP_ADDRESS
tunnel_type = gre
enable_tunneling = True
bridge_mappings = external:br-ex
```

 \bigcirc

配置Layer-3 (L3) agent

编辑/etc/neutron/l3_agent.ini文件并完成下列配置: a.编辑[DEFAULT]小节,配置驱动,启用网络命名空间,配置外部网络桥接 [DEFAULT]

```
. . .
```

interface_driver = neutron.agent.linux.interface.OVSInterfaceDriver use_namespaces = True external network bridge = br-ex

b.(可选)在[DEFAULT]小节中配置详细日志输出。方便排错。 [DEFAULT]

```
• • •
```

verbose = True

配置DHCP agent

1、编辑/etc/neutron/dhcp_agent.ini文件并完成下列步骤:
 a.编辑[DEFAULT]小节,配置驱动和启用命名空间
 [DEFAULT]

```
...
interface_driver = neutron.agent.linux.interface.OVSInterfaceDriver
dhcp_driver = neutron.agent.linux.dhcp.Dnsmasq
use_namespaces = True
```

b.(可选)在[DEFAULT]小节中配置详细日志输出。方便排错。 [DEFAULT]

•••

verbose = True

2、(可选,在VMware虚拟机中可能是必要的!)配置DHCP选项,将MUT改为1454bytes,以改善网络性能。

a.编辑/etc/neutron/dhcp_agent.ini文件并完成下列步骤: 编辑[DEFAULT]小节,启用dnsmasq配置:

[DEFAULT]

. . .

```
dnsmasq_config_file = /etc/neutron/dnsmasq-neutron.conf
```

```
b.创建并编辑/etc/neutron/dnsmasq-neutron.conf文件并完成下列配置:
启用DHCP MTU选项(26)并配置值为1454bytes
```

```
dhcp-option-force=26,1454
```

```
user=neutron
```

group=neutron

```
c.终止任何已经存在的dnsmasq进行
```

pkill dnsmasq

配置metadata agent

1、编辑/etc/neutron/metadata_agent.ini文件并完成下列配置: a.编辑[DEFAULT]小节,配置访问参数:

[DEFAULT]

```
...
auth_url = http://controller.nice.com:5000/v2.0
auth_region = regionOne
admin_tenant_name = service
admin_user = neutron
admin_password = NEUTRON_PASS
```

b.编辑[DEFAULT]小节,配置元数据主机:

[DEFAULT]

```
...
nova_metadata_ip = controller.nice.com
```


c.编辑[DEFAULT]小节,配置元数据代理共享机密暗号: [DEFAULT]

metadata_proxy_shared_secret = *METADATA_SECRET*

b. (可选)在[DEFAULT]小节中配置详细日志输出。方便排错。 [DEFAULT]

```
...
verbose = True
```

. . .

2、在controller节点,编辑/etc/nova/nova.conf文件并完成下列配置编辑[neutron]小节,启用元数据代理并配置机密暗号:

[neutron]

... sorvico n

service_metadata_proxy = True
metadata_proxy_shared_secret = METADATA_SECRET

3、在controller节点,重新启动compute API服务

systemctl restart openstack-nova-api.service

配置Open vSwitch (OVS)服务

1、启动VOS服务并配置开机自动启动:

systemctl enable openvswitch.service
systemctl start openvswitch.service

2、添加外部网桥(external birdge)

ovs-vsctl add-br br-ex

3、添加一个端口到外部网桥,用于连接外部物理网络

ovs-vsctl add-port br-ex INTERFACE_NAME

注:将INTERFACE_NAME换成实际连接外部网卡接口名。如:eth2或eno50332208。

1、创建网络服务初始化脚本的符号连接

In -s /etc/neutron/plugins/ml2/ml2_conf.ini /etc/neutron/plugin.ini

cp /usr/lib/systemd/system/neutron-openvswitch-agent.service /usr/lib/systemd/system/neutron-openvswitch-agent.service.orig

sed -i 's,plugins/openvswitch/ovs_neutron_plugin.ini,plugin.ini,g'
/usr/lib/systemd/system/neutron-openvswitch-agent.service

2、启动网络服务并设置开机自动启动

systemctl enable neutron-openvswitch-agent.service neutron-l3-agent.service neutrondhcp-agent.service neutron-metadata-agent.service neutron-ovs-cleanup.service # systemctl start neutron-openvswitch-agent.service neutron-l3-agent.service neutrondhcp-agent.service neutron-metadata-agent.service

验证(在controller节点执行下列命令)

1、执行admin环境变量脚本

source admin-openrc.sh

2、列出neutron代理,确认启动neutron agents成功。

neutron agent-list

+-	id	+ agent_type +	+ host +	+ alive	+ admin_state_up +	+ binary +	+ +
	1 f12c88c- f408-406c-b6ff-bfdfc7657f1d 4da69d94-821f-4ffa-8a20-33efaa2e95bf 91da0d86-1498-4a93-b4a0-b618ce17704d ecd59997-22f1-467c-b3d7-ea5a90bb13a2	L3 agent Open vSwitch agent DHCP agent Metadata agent	network.nice.com network.nice.com network.nice.com network.nice.com	:-) :-) :-) :-)	True True True True	neutron-l3-agent neutron-openvswitch-agent neutron-dhcp-agent neutron-metadata-agent	- +

安装并配置compute1节点

- 配置先决条件
- 安装网络组件
- 配置网络通用组件
- 配置Modular Layer 2 (ML2) plug-in
- 配置Open vSwitch (OVS) service
- 配置计算服务使用网络
- 完成安装
- 验证

1、编辑/etc/sysctl.conf文件,使其包含下列参数:

net.ipv4.conf.all.rp_filter=0
net.ipv4.conf.default.rp_filter=0

2、使/etc/sysctl.conf文件中的更改生效:

sysctl -p

yum install openstack-neutron-ml2 openstack-neutron-openvswitch

配置网络通用组件

编辑/etc/neutron/neutron.conf文件并完成下列操作:

a.编辑[database]小节,注释左右connection配置项。因为计算节点不能直接连接数据库。

b.编辑[DEFAULT]小节,配置RabbitMQ消息代理访问:

[DEFAULT]

```
...
rpc_backend = rabbit
rabbit_host = controller.nice.com
rabbit_password = RABBIT_PASS
```



```
c.编辑[DEFAULT]和[keystone_authtoken]小节,配置认证服务访问:
[DEFAULT]
```

```
auth_strategy = keystone
```

```
[keystone_authtoken]
```

. . .

```
...
auth_uri = http://controller.nice.com:5000/v2.0
identity_uri = http://controller.nice.com:35357
admin_tenant_name = service
admin_user = neutron
admin_password = NEUTRON_PASS
```


d.编辑[DEFAULT]小节, 启用Modular Layer2(ML2)插件, 路由服务和重叠ip地址功能:

[DEFAULT]

```
...
core_plugin = ml2
service_plugins = router
allow_overlapping_ips = True
```

b. (可选) 在[DEFAULT]小节中配置详细日志输出。方便排错。

[DEFAULT]

... verbose = True

配置Modular Layer 2 (ML2) plug-in

编辑/etc/neutron/plugins/ml2/ml2_conf.ini文件并完成下列操作:

a.编辑[ml2]小节, 启用flat和generic routing encapsulation (GRE)网络类型驱动, GRE租 户网络和OVS机制驱动:

[ml2]

• • •

```
type_drivers = flat,gre
tenant_network_types = gre
mechanism_drivers = openvswitch
```

b.编辑[ml2_type_gre]小节,配置隧道标识符(id)范围:

[ml2_type_gre]

```
tunnel id ranges = 1:1000
```


c.编辑[securitygroup]小节, 启用安装组, ipset并配置OVS iptables防火墙驱动:

[securitygroup]

```
...
enable_security_group = True
enable_ipset = True
```

firewall_driver = neutron.agent.linux.iptables_firewall.OVSHybridIptablesFirewallDriver

d.编辑[ovs]小节, 配置Open vSwitch (OVS) agent:

[ovs]

```
...
local_ip = INSTANCE_TUNNELS_INTERFACE_IP_ADDRESS
tunnel_type = gre
enable_tunneling = True
```


配置Open vSwitch (OVS) service

启动OVS服务并设置开机自动启动:

systemctl enable openvswitch.service
systemctl start openvswitch.service

配置计算服务使用网络

编辑/etc/nova/nova.conf文件并完成下列操作: a.编辑[DEFAULT]小节,配置API接口和驱动:

[DEFAULT]

```
...
network_api_class = nova.network.neutronv2.api.API
security_group_api = neutron
linuxnet_interface_driver = nova.network.linux_net.LinuxOVSInterfaceDriver
firewall_driver = nova.virt.firewall.NoopFirewallDriver
```


b.编辑[neutron]小节,配置访问参数:

[neutron]

```
...
url = http://controller.nice.com:9696
auth_strategy = keystone
admin_auth_url = http://controller.nice.com:35357/v2.0
admin_tenant_name = service
admin_username = neutron
admin_password = NEUTRON_PASS
```


1、创建网络服务初始化脚本的符号连接

In -s /etc/neutron/plugins/ml2/ml2_conf.ini /etc/neutron/plugin.ini

cp /usr/lib/systemd/system/neutron-openvswitch-agent.service /usr/lib/systemd/system/neutron-openvswitch-agent.service.orig

sed -i 's,plugins/openvswitch/ovs_neutron_plugin.ini,plugin.ini,g'
/usr/lib/systemd/system/neutron-openvswitch-agent.service

2、重启计算服务:

systemctl restart openstack-nova-compute.service

3、启动OVS代理服务并设置开机自动启动:

systemctl enable neutron-openvswitch-agent.service
systemctl start neutron-openvswitch-agent.service

验证(在controller节点执行下列命令)

1、执行admin环境变量脚本

source admin-openrc.sh

2、列出neutron代理,确认启动neutron agents成功。

neutron agent-list

+	+	+				\pm
id	agent_type	host	alive	admin_state_up	binary	 +
1 f12c88c- f408- 406c- b6 ff- bfdfc7657 f1 d 4da69d94- 821 f- 4 ffa- 8a20- 33e faa2e95bf 91 da0d86- 1 498- 4a93- b4a0- b618ce1 7704d ecd59997- 22 f1- 467c- b3d7- ea5a90bb1 3a2 f2962e79- 72b5- 4626- 8ddd- 3c3d94ab7 f91	L3 agent Open vSwitch agent DHCP agent Metadata agent Open vSwitch agent	network.nice.com network.nice.com network.nice.com network.nice.com compute1.nice.com	:-) :-) :-) :-) :-)	True True True True True	neutron-l3-agent neutron-openvswitch-agent neutron-dhcp-agent neutron-metadata-agent neutron-openvswitch-agent	

配置外部网络(在controller节点执行后面的命令)

- 创建一个外部网络
- 创建一个外部网络的子网

创建一个外部网络

1、执行admin环境变量脚本

source admin-openrc.sh

2、创建网络

neutron net-create ext-net --shared --router:external True --provider:physical_network

external --provider:network_type flat

+ Field +	+
admin_state_up id name provider:network_type provider:physical_network provider:segmentation_id router:external shared status subnets tenant_id	True 10f74979-8ba7-4127-ab3d-a4e9e8c95b18 ext-net flat external True True ACTIVE 28b6940857244f8fa0e4178f07d1f125

创建一个外部网络的子网

创建子网:

neutron subnet-create ext-net --name ext-subnet \

--allocation-pool start=*FLOATING_IP_STAR*T,end=*FLOATING_IP_END* \

--disable-dhcp --gateway EXTERNAL_NETWORK_GATEWAY EXTERNAL_NETWORK_CIDR

FLOATING_IP_STAR=起始IP

FLOATING_IP_END=结束IP

EXTERNAL_NETWORK_GATEWAY=外部网络网关

EXTERNAL_NETWORK_CIDR=外部网络网段

例如,外网网段为: 10.0.0.0/24,浮动地址范围为: 10.0.0.100~10.0.0.200,网关为: 10.0.0.1:

neutron subnet-create ext-net --name ext-subnet \

--allocation-pool start=10.0.0.100,end=10.0.0.200 \

--disable-dhcp --gateway 10.0.0.1 10.0.0/24

Field	Value
allocation_pools cidr dns nameservers	{"start": "10.0.0.100", "end": "10.0.0.200"} 10.0.0.0/24
enable_dhcp gateway_ip host routes	False 10.0.0.1
id ip_version ipv6_address_mode	dbe681 f0-1287-4e68-aaa8-fa2c319049b8 4
ipv6_ra_mode name network_id tenant_id +	ext-subnet 10f74979-8ba7-4127-ab3d-a4e9e8c95b18 28b6940857244f8fa0e4178f07d1f125

配置租户网络(在controller节点执行后面的命令)

- 创建租户网络
- 创建租户网络的子网
- 在租户网络创建一个路由器,用来连接外部网和租户网

创建一个租户网络

1、执行demo环境变量脚本

source demo-openrc.sh

2、创建租户网络

neutron net-create demo-net

Field	
admin_state_up id name provider:network_type provider:physical_network provider:segmentation_id router:external shared status subnets tenant_id	True d36f6eb0-e59a-42b9-9209-5547e022484b demo-net gre 1 False False ACTIVE c7822bf6-5750-4f11-935b-3028cd95af04 a59e18303bc246eb92b86a1492db462b

创建一个租户网络的子网

创建子网:

#neutron subnet-create demo-net --name demo-subnet |
--gateway TENANT_NETWORK_GATEWAY TENANT_NETWORK_CIDR

TENANT_NETWORK_GATEWAY=租户网的网关 **TENANT_NETWORK_CIDR**=租户网的网段

例如,租户网的网段为192.168.2.0/24,网关为192.168.2.1(网关通常默认为.1)

neutron subnet-create demo-net --name demo-subnet \
 --gateway 192.168.2.1 192.168.2.0/24

Field	++ Value +
allocation_pools cidr dns nameservers	{"start": "192.168.2.2", "end": "192.168.2.254"} 192.168.2.0/24
enable_dhcp gateway_ip host_routes	True 192.168.2.1
id ip_version ipv6 address mode	c7822bf6-5750-4f11-935b-3028cd95af04 4
ipv6_ra_mode name network_id tenant id	demo- subnet d36 f6 eb0- e59a- 42b9- 9209- 5547 e022484b 259 e1 8302 b s246 eb92 b 86 e1 492 d b46 2 b

在租户网络创建一个路由器,用来连接外部网和租户网

1、创建路由器

neutron router-create demo-router

+	++
Field	Value
+	++
admin_state_up	True
external gateway info	
id	5c0e67e7-337f-4309-8bc5-b1eae9088f02
name	demo-router
routes	
status	ACTIVE
tenant_id	a59e18303bc246eb92b86a1492db462b
+	++

2、附加路由器到demo租户的子网

neutron router-interface-add demo-router demo-subnet

root@controller ~]# Added interface b1a894fd-aee8-475c-9262-4342afdc1b58 to router demorouter.

3、通过设置网关,使路由器附加到外部网

neutron router-gateway-set demo-router ext-net

root@controller ~]# Set gateway for router demo-router

1、查看路由器获取到的IP。

<pre># neutron router-list</pre>			
+	+	+	+
++ id	name	external_gateway_info	distributed
ha +	+	+	'
++ 5c0e67e7-337f-4309-8bc5-b1eae9088f02 rue, "external_fixed_ips": [{"subnet_id" False	demo-router ': "dbe681f0-1	{"network_id": "10f74979-8ba7-4127-ab3d-a4e9e8c95b18", "e 287-4e68-aaa8-fa2c319049b8", "ip_address": "10.0.0.100"}]}	nable_snat": t False
+	+	+	+

2、在任何一台外部主机上ping路由器获取到的外部地址

C:\Windows\system32>ping 10.0.0.100	
正在 Ping 10.0.0.100 具有 32 字节的数据: 来自 10.0.0.100 的回复: 字节=32 时间<1ms TTL=64 来自 10.0.0.100 的回复: 字节=32 时间<1ms TTL=64 来自 10.0.0.100 的回复: 字节=32 时间<1ms TTL=64 来自 10.0.0.100 的回复: 字节=32 时间<1ms TTL=64	
10.0.0.100 的 Ping 统计信息: 数据包: 已发送 = 4, 已接收 = 4, 丢失 = 0 <0% 丢失>, 往返行程的估计时间<以毫秒为单位>: 最短 = ∞ms, 载长 = 0ms, 平均 = 0ms	料下载,可百度访问:尚硅谷官网

