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Preface

T hese pages tell the story of statistical arbitrage. It is both a history,
describing the first days of the strategy’s genesis at Morgan Stanley

in the 1980s through the performance challenging years of the early
twenty-first century, and an exegesis of how and why it works. The
presentation is from first principles and largely remains at the level
of a basic analytical framework. Nearly all temptation to compose
a technical treatise has been resisted with the goal of contributing a
work that will be readily accessible to the larger portion of interested
readership. I say ‘‘nearly all’’: Chapter 7 and the appendix to Chapter
11 probably belong to the category of ‘‘temptation not resisted.’’
Much of what is done by more sophisticated practitioners is discussed
in conceptual terms, with demonstrations restricted to models that
will be familiar to most readers. The notion of a pair trade—the
progenitor of statistical arbitrage—is employed to this didactic end
rather more broadly than actual trading utility admits. In adopting
this approach, one runs the risk of the work being dismissed as
a pairs trading manual; one’s experience, intent, and aspirations
for the text are more extensive, but the inevitability of the former
is anticipated. In practical trading terms, the simple, unelaborated
pair scheme is no longer very profitable, nonetheless it remains a
valuable tool for explication, retaining the capacity to demonstrate
insight, modeling, and analysis while not clouding matters through
complexity. After a quarter century in the marketplace, for profitable
schemes beyond paper understanding and illustration, one needs to
add some structural complexity and analytical subtlety.

One elaboration alluded to in the text is the assembling of a set
of similar pairs (without getting into much detail on what metrics
are used to gauge the degree of similarity), often designated as a
group. Modeling such groups can be done in several ways, with some
practitioners preferring to anchor a group on a notional archetype,
structuring forecasts in terms of deviation of tradable pairs from the
archetype; others create a formal implementation of the cohort as

xiii
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a gestalt or a synthetic instrument. Both of those approaches, and
others, can be formally analyzed as a hierarchical model, greatly
in vogue (and greatly productive of insight and application) in
mainstream statistical thinking for two decades; add to the standard
static structure the dynamic element in a time series setting and one is
very quickly building an analytical structure of greater sophistication
than routinely used as the didactic tool in this book. Nonetheless,
all such modeling developments rely on the insight and techniques
detailed herein.

Those readers with deeper knowledge of mathematical and sta-
tistical science will, hopefully, quickly see where the presentation can
be taken.

Maintaining focus on the structurally simple pair scheme invites
readers to treat this book as an explicit ‘‘how to’’ manual. From
this perspective, one may learn a reasonable history of the what
and the how and a decent knowledge of why it is possible. Con-
temporary successful execution will require from the reader some
additional thought and directed exploration as foregoing remarks
have indicated. For that task, the book serves as a map showing
major features and indicating where the reader must get out a com-
pass and notebook. The old cartographers’ device ‘‘Here be dragons’’
might be usefully remembered when you venture thus.

The text has, unashamedly, a statistician’s viewpoint: Models can
be useful. Maintaining a model’s utility is one theme of the book.
The statistician’s preoccupation with understanding variation—the
appreciation of the knowledge that one’s models are wrong, though
useful, and that the nature of the wrongness is illuminated by the
structure of ‘‘errors’’ (discrepancies between observations and what
a model predicts) is another theme of the book. Or, rather, not a
distinct theme, but an overriding, guiding context for the material.

The notion of a pair trade is introduced in Chapter 1 and
elaborated upon in Chapter 2. Following explication and exemplifi-
cation, two simple theoretical models for the underlying phenomenon
exploited by pairs, reversion, are proposed. These models are used
throughout the text to study what is possible, illuminate how the pos-
sibilities might be exploited, consider what kinds of change would
have negative impact on exploitation, and characterize the nature
of the impact. Approaches for selecting a universe of instruments
for modeling and trading are described. Consideration of change is
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introduced from this first toe dipping into analysis, because temporal
dynamics underpin the entirety of the project. Without the dynamic
there is no arbitrage.

In Chapter 3 we increase the depth and breadth of the analysis,
expanding the modeling scope from simple observational rules1 for
pairs to formal statistical models for more general portfolios. Several
popular models for time series are described but detailed focus is on
weighted moving averages at one extreme of complexity and factor
analysis at another, these extremes serving to carry the message as
clearly as we can make it. Pair spreads are referred to throughout
the text serving, as already noted, as the simplest practical illustrator
of the notions discussed. Where necessary to make our urgencies
sensible, direct mention is made of other aspects of the arbitrageur’s
concern, including portfolio optimization and factor exposures. For
the most part though, incursions into multivariate territory are
avoided. Volatility modeling (and the fascinating idea of stochastic
resonance) are treated separately here and in Chapter 6; elsewhere
discussion is subsumed in that of the mean forecast process.

Chapter 4 presents a probability theorem that illuminates the
prevalence of price moves amenable to exploitation by the simple
rules first applied in the late 1980s. The insight of this result guides
evaluation of exploitation strategies. Are results borne of brilliance
on the part of a modeler or would a high school graduate perform
similarly because the result is driven by structural dynamics, long
in the public domain, revealed by careful observation alone? Many
a claim of a ‘‘high’’ proportion of winning bets by a statistical
arbitrageur has more to do with the latter than any sophistication
of basic spread modeling or (importantly) risk management. When
markets are disrupted and the conditions underlying the theoretical
result are grossly violated, comparative practitioner performance
reveals much about basic understanding of the nature of the process

1There is no pejorative intent in the use of the term: The rules were effective. Statistical
content was limited to measurement of range of variation; no distributional study,
model formulation, estimation, error analysis, or forecasting was undertaken prior
to milking the observational insight. Those activities came soon enough—after the
profits were piling up. With the expanded statistical study, adding trading experience
to historical data, came insight into subtleties of the stock price motions exploited
and the market forces driving repetitious occurrence of opportunities.
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being exploited. Knowledge of the theoretical results often reveals
itself more when assumptions are violated than when things are hunky
dory and managers with solid understanding and those operating
intellectually blind generate positive returns in equal measure. (Tony
O’Hagan suggested that the basic probability result is long known,
but I have been unable to trace it. Perhaps the result is too trivial
to be a named result and exists as a simple consequence, a textbook
exercise, of basic distribution theory. No matter, the implication
remains profoundly significant to the statistical arbitrage story.)

Chapter 5 critiques a published article (whose authors remain
anonymous here to protect their embarrassment) to clarify the broad
conditions under which the phenomenon of reversion occurs. A cen-
tral role for the normal distribution is dismissed. The twin erroneous
claims that (a) a price series must exhibit a normal marginal distri-
bution for reversion to occur, and (b) a series exhibiting a normal
marginal distribution necessarily exhibits reversion are unceremo-
niously dispelled. There is reversion anywhere and everywhere, as
Chapter 4 demonstrates.

Chapter 6 answers the question, important for quantifying the
magnitude of exploitable opportunities in reversion gambits, ‘‘How
much volatility is there in a spread?’’

Chapter 7 is for the enthusiast not easily dissuaded by the presence
of the many hieroglyphs of the probability calculus. Anyone with
a good first course in probability theory can follow the arguments,
and most can manage the detailed derivations, too. The mechanics
are not enormously complicated. Some of the conceptual distinctions
may be challenging at first—read it twice! The effort will be repaid
as there is significant practical insight in the examples considered
at length. Knowledge of how close theoretical abstractions come
to reflecting measurable features of actual price series is invaluable
in assessing modeling possibilities and simulation or trading results.
Notwithstanding that remark, it is true that the remainder of the book
does not rely on familiarity with the material in Chapter 7. While
you may miss some of the subtlety in the subsequent discussions, you
will not lack understanding for omitting attention to this chapter.

Chapters 8 through 10 might have been labeled ‘‘The Fall,’’ as
they characterize the problems that beset statistical arbitrage begin-
ning in 2000 and directly caused the catastrophic drop in return
during 2002–2004. An important lesson from this history is that
there was not a single condition or set of conditions that abruptly
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changed in 2000 and thereby eliminated forecast performance of
statistical arbitrage models. What a story that would be! Far more
dramatic than the prosaic reality, which is a complex mix of multiple
causes and timings. All the familiar one liners, including decimaliza-
tion, competition, and low volatility, had (and have) their moment,
but none individually, nor the combination, can have delivered a blow
to financial markets. Fundamentally altering the price dynamics of
markets in ways that drastically diminish the economic potential in
reversion schemes, mining value across the spectrum from the very
high frequency hare of intra-day to the venerable tortoise of a month
or more, requires a more profound explanation.

Change upon change upon change cataloged in Chapter 9 is at
the root of the dearth of return to statistical arbitrage in 2002–2004.
(Performance deterioration in 2000–2002 was evident but limited
to a subset of practitioners.) This unusual episode in recent U.S.
macroeconomic history is over, but the effects linger in the financial
markets reflecting emergent properties of the collective behavior of
millions of investors; and surely those investors continue to embody,
no matter how lingering, those changes and the causes thereof.

The shift of trading from the floor of the New York Stock
Exchange to internal exchanges, in the guise of computer algo-
rithms designed by large brokerage houses and investment banks, has
cumulatively become a change with glacier-like implacability. Slow.
Massive. Irresistible. Crushing. Reforming.2 A frequently remarked
facet of the evolving dynamics is the decline of market volatility.
Where has market volatility gone? In large part the algorithms have
eaten it. Reduce the voice of a single participant yelling in a crowd and
the babel is unaffected. Quite a significant proportion of participants
and the reduced babel is oddly deafening. Now that computer pro-
grams (Chapter 10) ‘‘manage’’ over 60 percent of U.S. equity trades
among ‘‘themselves’’ the extraodinary result is akin to administering
a dose of ritalin to the hyperactive market child. In the commentary
on low volatility two themes stand out: one is a lament over the lack

2One major structural consequence, fed also by technical advance in the credit mar-
kets and the development of Exchange Traded Funds, is literally the forming anew
of patterns of price behavior detemined by the interaction of computer algorithms
as agents for share dealings. In addition to this re-forming, reform is simultaneously
underway with changes to Securities Exchange Commission regulations and NYSE
rules.
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of Keynes’ animal spirits, a concern that the entrepreneurial genius
of America is subdued even as Asian giants are stirring; the other is
a fear that investors have forgotten the risks inherent in investment
decisions, that inadvisable decisions are therefore being made that
will have negative consequences in the near future. The inconsistency
in those two characterizations is stark, but it can be rationalized.
Contrary to the first notion, the spirit is quite animated—with a
billion and a half shares changing ownership daily on the NYSE mart
alone, what other conclusion should one draw? There is plenty of
spirit: simply its animus is satisfied with less overt fuss. Algorithms
don’t have emotions. So there is plenty of innovative risk taking,
but low volatility by historical standards, induced by trading tech-
nologies, has not yet been properly internalized by many market
participants. Viewing contemporary volatility levels in the manner to
which historical experience has been accustomed ineluctably leads to
excessive risk taking.

Chapter 10 is interesting in its own right, notwithstanding any
relationship to the evolution of statistical arbitrage opportunities.
Algorithms and computer driven trading are changing the financial
world in many ways. Electronic exchanges have already been seen
off most of the world’s peopled trading places—and who among us
believes that the floor of the NYSE will be more than a museum,
parking lot, or memory in a year or two?

Chapter 11 describes the phoenix of statistical arbitrage, rising
out of the ashes of the fire created and sustained by the technological
developments in algorithmic trading. New, sustained patterns of
stock price dynamics are emerging. The story of statistical arbitrage
has returned to a new beginning. Will this fledgling fly?

The renaissance predicted in Chapter 11, drafted in 2005, is
already coming to pass. Since at least early 2006 there has been a
resurgence of performance from those practitioners who persisted
through the extremely challenging dynamic changes of 2003–2005.
Interestingly, while there are new systematic patterns in the move-
ments of relative equity prices, some old patterns have also regained
potency. Adoption of algorithmic trading is accelerating, with tools
now offered by more than 20 vendors. In another technology driven
development, beginning with Goldman Sachs in late 2006, at least
two offerings of general hedge fund replication by algorithmic means
have been brought to market. This is an exciting as well as exacting
time for statistical arbitrageurs.



Foreword

M ean reversion in prices, as in much of human activity, is a
powerful and fundamental force, driving systems and markets

to homeostatic relationships. Starting in the early 1980s, statistical
arbitrage was a formal and successful attempt to model this behavior
in the pursuit of profit. Understanding the arithmetic of statistical
arbitrage (sometimes abbreviated as stat. arb.) is a cornerstone to
understanding the development of what has come to be known as
complex financial engineering and risk modeling.

The trading strategy referred to as statistical arbitrage is generally
regarded as an opaque investment discipline. The view is that it is
being driven by two complementary forces, both deriving from the
core nature of the discipline: the vagueness of practitioners and the
lack of quantitative knowledge on the part of investors. Statistical
arbitrage exploits mathematical models to generate returns from
systematic movements in securities prices. Granted, no investment
manager is inclined to divulge the intricate ‘‘how-tos’’ of his business.
While stock pickers can tell a good story without revealing the heart
of their decision making, that is not the case with model-based
strategies developed by ‘‘quants.’’ A description with any meaningful
detail at all quickly points to a series of experiments from which an
alert listener can try to reverse-engineer the strategy. That is why
quant practitioners talk in generalities that are only understandable
by the mathematically trained.

Opacity has also increased the need for mathematical maturity
on the part of investors seeking to assess managers. To comprehend
what a statistical arbitrageur is saying beyond a glib level, one needs
to understand advanced mathematics beyond the college level. This,
naturally, limits the audience. The limitation is perpetuated by the
lack of reference material from which to learn. Statistical Arbitrage
now fills that void.

Statistical arbitrage has been in existence for approximately 25
years. During that time, the general concepts have been widely

xix
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disseminated via the storytelling of early implementers to interested
investment bank analysts and academics. Nevertheless, opacity
remains because practitioners have steadily increased the sophistica-
tion of their modeling—and for good commercial reasons remained
obscure about their innovations. In the wide dissemination of basic
stat. arb. concepts, the term mean reversion as well as its variant,
reversion to the mean, looms very large. Reversion to the mean is a
simple concept to illustrate: Children of unusually tall parents are typ-
ically shorter than their parents; children of unusually short parents
are typically taller than their parents. This is a concept that is easy for
most people to grasp. Translating this idea to the motions of security
prices means that securities prices return to an average value. So far,
so good. But then we hit a problem. Height reversion is an intergen-
erational phenomenon, while price reversion is an entity dynamic.

Prices returning from where? And to what average value? The
average height of adults is a familiar concept, even if the precise
quantification requires a little work. Even children as young as
grade-school age can give a reasonable estimate of the average height
of the adults they know, and by extension, of the average height
of local adult populations. There is no such common grounding of
observation or experience to apply to securities prices. They are all
over the map. Scaling is arbitrary. They can grow many fold. And
they can collapse to zero. People do not grow to the sky and then
revert back to some average, but security prices can.

Even if we suppose that the questions have been reasonably
answered, other technicalities immediately pose themselves: How
does one identify when a price is away from the mean and by how
much? How long will the return to the mean take?

Here is where the opacity enters the discussion and makes its
permanent home. The language of mathematical models compounds
the unfamiliarity of the notions, generating a sense of disquiet, a fear
of lack of understanding.

In Statistical Arbitrage, Pole has given his audience a didactic tour
of the basic principles of statistical arbitrage, eliminating opacity at
the Statistical Arbitrage 101 level. In the 1980s and early 1990s,
Stat. Arb. 101 was, for the most part, all there was (exceptions such
as D.E. Shaw and Renaissance aside). Today, more than a decade
later, there is a much more extensive and complex world of statistical
arbitrage.
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This is not unlike the natural world, which is now populated
by incredibly complex biological organisms after four billion years
of evolution. Yet the simplest organisms thrive everywhere and still
make up by far the largest part of the planet’s biomass. So is it true in
statistical arbitrage, where the basics underpin much of contemporary
practice.

Statistical Arbitrage describes the phenomena, the driving forces
generating those phenomena, the patterns of dynamic development
of exploitable opportunities, and models for exploitation of the basic
reversion to the mean in securities prices. It also offers a good deal
more, from hints at more sophisticated models to valuable practi-
cal advice on model building and performance monitoring—advice
applicable far beyond statistical arbitrage.

Chapters 1 and 2 speak to the genesis of statistical arbitrage, the
venerable pairs trading schemes of the 1980s, with startling illustra-
tion of the enormous extent and productivity of the opportunities.
This demonstration sets the scene for theoretical development, pro-
viding the first step to critical understanding of practical exploitation
with rules for calibrating trade placement. More penetration of opac-
ity follows in Chapter 5 where the relationship between (a) reversion
in securities prices watched day-by-day and (b) statistical descriptions
(distributions) of collections of such daily prices viewed as a glob
devoid of the day-by-day context, is clearly spelled out.

Chapters 8 and 9 tell of the midlife crisis of statistical arbitrage.
The roiling of United States financial markets for many months,
beginning with the Enron debacle in 2000 and running through
the terrorist attacks of 2001 and what Pole calls ‘‘an appalling
litany’’ of corporate misconduct, is dissected for anticipated impact
on statistical arbitrage performance. Adding to that mix have been
technical changes in the markets, including decimalization and the
decline of independent specialists on the floor of the NYSE. Pole
draws a clear picture of why statistical arbitrage performance was
disrupted. Very clearly the impression is made that the disruption
was not terminal.

Chapters 10 and 11 speak to the arriving future of statistical
arbitrage. Trading algorithms, at first destroyers of classical stat. arb.
are now, Pole argues, progenitors of new, systematically exploitable
opportunities. He labels one of the new motions the ‘‘catastrophe
move’’; a detailed exposition of modeling the dynamics follows a
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catastrophe-theory explication of a possible rationale for the behav-
ioral pattern. The unmistakable impression is that statistical arbitrage
is rising once again.

The tone of Statistical Arbitrage is direct and thorough. Obfus-
cation is in short supply. Occasionally, the tone is relieved with a bit
of lightheartedness—the tadpole-naming story in a note to Chapter
11 is a gem—and throughout, refreshing prose is to be found.

In describing mathematical models, authors readily produce
unmemorable, formulaic wording offering nothing by way of inter-
pretation or explanation beyond what is provided by the algebra
itself. Statistical Arbitrage is an exception—a break in the cloud of
opacity—a mean that Pole has avoided reverting to!

Gregory van Kipnis
April 23, 2007
New York City
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CHAPTER 1
Monte Carlo or Bust

We must always be ready to learn from repeatable
occurrences however odd they may look at first sight.

—Box on Quality and Design, G.E.P. Box

1.1 BEGINNING

I n 1985 a small group of quantitatively trained researchers under
the tutelage of Nunzio Tartaglia1 created a program to buy and sell

stocks in pair combinations. Morgan Stanley’s Black Box was born
and quickly earned a reputation and a lot of money. A fifteen-year
rise to heroic status for statistical arbitrage (a term uncoined at that
time) was begun.

Details of the Black Box were guarded but soon rumor revealed
the basic tenets and the name ‘‘pairs trading’’ appeared in the financial
lexicon. The premise of pairs trading was blindingly simple: Find a
pair of stocks that exhibit similar historical price behavior. When
the prices of the stocks diverge, bet on subsequent convergence.
Blindingly, beautifully simple. And hugely profitable.

1In The Best of Wilmott, Paul Wilmott states that the MS pairs trading program
was initiated by Gerry Bamberger in 1982/1983, that Bamberger departed MS in
1985 for Princeton Newport Partners and retired in 1987. We are unable to confirm
whether Bamberger’s MS program was distinct from Tartaglia’s; others have claimed
a group effort and complain that it is unfair to annoint either group head as ‘‘the
inventor.’’

Interestingly Wilmott claims that pairs trading was discovered at his firm as
early as 1980.

1



2 STATISTICAL ARBITRAGE
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FIGURE 1.1 Daily closing prices, CAL and AMR (2002–2004)

Where did Tartaglia get his insight? As with many stories of
invention, necessity was the motivating force. Chartered by manage-
ment to find a way to hedge the risks routinely incurred through
its lucrative activities with block trading, Tartaglia’s mathematical
training conjured up the notion of selling (short) a stock that exhib-
ited similar trading behavior to the stock being managed by the
block desk. Immediately the notion was invented, the more general
application of pairs trading was innovated. Very shortly, a new profit
center was adding to the bottom line.

Figure 1.1 shows the daily close price of two airline stocks,
Continental Airlines (CAL) and American Airlines (AMR). Notice
how the spread between the two price traces opens and closes. The
pairs trading scheme veritably yells at one: Buy the lower-priced
stock and short the higher-priced stock when the spread is ‘‘wide’’
(A), and reverse out those positions when the spread closes (B).

In 1985 computers were not familiar appliances in homes, and
daily stock price feeds were the tools of professionals alone. Sheer
number crunching power, crucial to serious implementation of a pairs
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trading business, required tens of thousands of dollars of hardware.
Pairs trading, so beautifully simple in concept and for years now in
practice, was born in an era in which investment houses alone could
realistically research and deploy it.

Many stories from the era infect the industry, mythologizing the
business and the practitioners. Two such stories that have genuine
substance and that have continued significance today are the SEC’s
use of algorithms to detect aberrant price patterns, and the evolution
of specialist reaction to the contrarian traders from initial suspicion
to eventual embrace.

The SEC was intrigued no less than others by the aura around
the Morgan Stanley black box. Upon learning about how the models
worked to predict certain stock price motions, it was quickly realized
how the technology could be employed to flag some kinds of unusual
and potentially illegal price movement, long before neural network
technology was employed in this role.

In the late 1980s the NYSE was populated with over 50 inde-
pendent specialists. Largely family businesses with limited capital,
they were highly suspicious when the group at Morgan Stanley
began systematically sending orders to ‘‘buy weakness’’ and ‘‘sell
strength.’’ The greatest concern was that the big house was attempt-
ing to game the little specialist. Suspicion gradually evolved into
cozy comfort as the pattern of trading a stock was revealed. Even-
tually, comfort became full embrace such that when the specialist
saw Morgan Stanley accumulating a weak stock, the specialist would
jump on the bandwagon ‘‘knowing’’ that the stock’s price was set
to rise.

The early years were enormously lucrative. Success soon spawned
independent practitioners including D.E. Shaw and Double Alpha,
both created by former acolytes of Tartaglia. In subsequent years
other groups created pairs trading businesses, the founders of which
can be traced either to the original group at Morgan Stanley or to
second-generation shops such as Shaw. As the practice became more
widely known, academic interest was piqued; published articles by
NBER, among others, made the general precept known to a wide
audience and with the rapid increase in power of low cost personal
computers, the potential practitioner base exploded. Very quickly, so
did the actual practitioner base.
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1.2 WHITHER? AND ALLUSIONS

Two decades later, the matured adult statistical arbitrage that grew
up from the pair trading infant faces a cataclysmic environmental
change. Returns have greatly diminished. Managers are beset by
difficulties and are adapting strategies to cope. The financial market
environment of the new century poses survival challenges one might
liken to those faced by earthly fauna millenia ago when the last
ice age dawned. The quick and adaptable survived. The slow and
morphologically fixed froze or starved.

Statistical arbitrage’s ice age dawned in 2000 and entered full
‘‘frigidia’’ in 2004. Observers proclaimed the investment discipline’s
demise, investors withdrew funds, and practitioners closed shop. The
rout was comprehensive. A pall of defeat enveloped discussion of
the business.

This judgment of a terminal moment for statistical arbitrage is
premature, I believe. Despite the problems for traditional statistical
arbitrage models presented by market structural changes, which are
documented and examined in later chapters, there are indications
of new opportunities. New patterns of stock price behavior are
occurring on at least two high-frequency timescales. Driving forces
are identifiable in the interplay of electronic trading entities, the rising
future of stock trading in the United States.

The appearance of the new opportunities, admittedly only roughly
characterized at this time, suggests significant economic exploitability,
and they may be enough to stave off the fate of extinction for statistical
arbitrage. The cro magnon man of classic reversion plays will be super-
seded by the homo sapiens of. . . . That remains to be seen but outlines
are drawn in Chapter 11.

I considered titling the book, The Rise and Fall and Rise? of
Statistical Arbitrage, reflecting the history and the possibilities now
emerging. The pattern is explicit in the preceding paragraphs of this
chapter and in the structure of the book, which is written almost in the
form of an annotated history. To those readers whose interest is borne
of the question, ‘‘What are the prospects for statistical arbitrage?’’,
the historical setting and theoretical development in Chapters 1
through 7 may seem anachronistic, unworthy of attention. It might
be likened to suggesting to a student of applied mathematics that
the study of Copernicus’ system for the motions of astronomical
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bodies is presently utilitarian. I maintain that there is value in the
historical study (for the mathematician, too, but that is taking analogy
much further than it deserves). Knowing what worked previously in
statistical arbitrage, and how and why it did, provides the necessary
foundation for understanding why market structural changes have
negatively impacted the strategy class. Knowing which changes have
had an effect and how those effects were realized illuminates what
might be anticipated in the presently congealing environment.

Interpreting the present in the context of the past is hardly a
novel notion. It is a sound bedrock of scientific investigation. Most
people are familiar with the admonition of political philosophers
that those who do not study the past are doomed to repeat its
mistakes.2 But that is not our reference point. While undoubtedly
some arbitrageurs have made their individual errors, there cannot be
a verdict that the collective of practitioners has ‘‘made a mistake’’
that ought to be guarded against ever after. Our reference point is
the far more compelling scientific view of ‘‘standing on the shoulders
of giants.’’ Bereft of value judgments, scientific theories, right or
wrong, and no matter how pygmy the contribution, are set forth
for scrutiny forever. The promise of the new opportunities may be
understood and evaluated in the context of how market changes
rendered valueless that which was formerly lucrative.

Let’s be quite clear. There is no claim to a place in history
with the work reported here despite allusions to historical scientific
genius. Neither is the area of study justifiably on the same shelf as
physics, chemistry, and mathematics. It sits more appropriately with
economics and sociology because the primal forces are people. We
may label an emergent process as ‘‘reversion’’ (in prices), describe
temporal patterns, posit mathematical equations to succinctly repre-
sent those patterns, and commit ourselves to actions—trading—on

2‘‘Progress, far from consisting in change, depends on retentiveness. When change
is absolute there remains no being to improve and no direction is set for possible
improvement: and when experience is not retained, as among savages, infancy is
perpetual. Those who cannot remember the past are condemned to repeat it. In
the first stage of life the mind is frivolous and easily distracted, it misses progress
by failing in consecutiveness and persistence. This is the condition of children and
barbarians, in which instinct has learned nothing from experience.’’ The Life of
Reason, George Santayana.
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the output of the same, but the theory, models, and analysis are
of an emergent process, not the causal mechanism(s) proper. No
matter how impressibly we may describe routines and procedures
of the regular players, from analysts (writing their reports) to fund
advisors (reading those reports, recommending portfolio changes)
to fund managers (making portfolio decisions) to traders (acting on
those decisions), the modeling is necessarily once removed from the
elemental processes. In that complex universe of interactions, only
the result of which is modeled, lies the genesis of the business and
now, more fatefully, the rotting root of the fall. Astonishingly, that
rotting root is fertilizing the seeds of the rise(?) to be described.

Unlike the study of history or political philosophy, which is
necessarily imbued with personal interpretations that change with
the discovery of new artifacts or by doubt cast on the authenticity
of previously sacred documents, the study of statistical arbitrage
benefits from an unalterable, unequivocal, complete data history
that any scholar may access. The history of security prices is, like
Brahe’s celestial observations, fixed. While Brahe’s tabulations are
subject to the physical limitations of his time3 and uncertainties
inherent in current relativistic understanding of nature’s physical
reality, the history of security prices, being a human construct, is
known precisely.

In exhorting the quality of our data, remember that Brahe was
measuring the effects of physical reality on the cosmic scale for
which scientific theories can be adduced and deduced. Our numbers,
records of financial transactions, might be devoid of error but they are
measurements of bargains struck between humans. What unchanging
physical reality might be appealed to in that? We might build models
of price changes but the science is softening as we do so. The
data never changes but neither will it be repeated. How does one
scientifically validate a theory under those conditions?

3The first Astronomer Royal, John Flamsteed (1646–1719), systematically mapped
the observable heavens from the newly established Royal Observatory at Green-
wich, compiling 30,000 individual observations, each recorded and confirmed over
40 years of dedicated nightly effort. ‘‘The completed star catalogue tripled the num-
ber of entries in the sky atlas Tyco Brahe had compiled at Uraniborg in Denmark, and
improved the precision of the census by several orders of magnitude.’’ In Longitude
by Dava Sobel.
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The questions are unanswerable here. One cannot offer a philos-
ophy or sociology of finance. But one can strive for scientific rigor
in data analysis, hypothesis positing, model building, and testing.
That rigor is the basis of any belief one can claim for the validity of
understanding and coherent actions in exploiting emergent properties
of components of the financial emporium.

This volume presents a critical analysis of what statistical arbi-
trage is—a formal theoretical underpinning for the existence of
opportunities and quantification thereof, and an explication of the
enormous shifts in the structure of the U.S. economy reflected in finan-
cial markets with specific attention on the dramatic consequences for
arbitrage possibilities.





CHAPTER 2
Statistical Arbitrage

Much of what happens can conveniently be thought of as
random variation, but sometimes hidden within the
variation are important signals that could warn us of
problems or alert us to opportunities.

—Box on Quality and Discovery, G.E.P. Box

2.1 INTRODUCTION

T he pair trading scheme was elaborated in several directions begin-
ning with research pursued in Tartaglia’s group. As the analysis

techniques used became more sophisticated and the models deployed
more technical, so the sobriquet by which the discipline became
known was elaborated. The term ‘‘statistical arbitrage’’ was first
used in the early 1990s.

Statistical arbitrage approaches range from the vanilla pairs
trading scheme of old to sophisticated, dynamic, nonlinear models
employing techniques including neural networks, wavelets, fractals—
just about any pattern matching technology from statistics, physics,
and mathematics has been tried, tested, and in a lot of cases,
abandoned.

Later developments combined trading experience, further empir-
ical observation, experimental analysis, and theoretical insight from
engineering and physics (fields as diverse as high energy particle
physics to fluid dynamics and employing mathematical techniques
from probability theory to differential and difference equations).
With so much intellectual energy active in research, the label ‘‘pairs

9
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trading’’ seemed inadequate. Too mundane. Dowdy, even. ‘‘Statisti-
cal arbitrage’’ was invented, curiously, despite the lack of statisticians
or statistical content of much of the work.

2.2 NOISE MODELS

The first rules divined for trading pairs were plain mathematical
expressions of the description of the visual appearance of the spread.
For a spread like the CAL–AMR spread in Figure 2.1, which ranges
from −$2 to $6, a simple, effective rule is to enter the spread bet
when the spread is $4 and unwind the bet when it is $0.

We deliberately use the term rules rather than model because
there is no attempt at elaboration of a process to explain the observed
behavior, but simply a description of salient patterns. That is not
to diminish the validity of the rules but to characterize the early
work accurately. As the record shows, the rules were fantastically
profitable for several years.

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3
2002 2003 2004

−4
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2

4

6

8

$

FIGURE 2.1 Daily closing spread, CAL–AMR
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Applying the $4–$0 rule to the CAL–AMR spread, there is
a single trade in the calendar years 2002 and 2003. If this looks
like money for practically no effort, that is the astonishing situa-
tion Tartaglia discovered in 1985—writ large across thousands of
stock pairs.

Alternatives, elaborations, and generalizations jump off the page
as one looks at the spread and considers that first, seductively simple
rule. Two such elaborations are:

■ Make the reverse bet, too.
■ Make repeated bets at staged entry points.

2.2.1 Reverse Bets

Why sit out the second half of 2002 while the spread is increasing
from its narrow point toward the identified entry point of $4? Why
not bet on that movement? In a variant of the commodity traders’
‘‘turtle trade,’’ rule 1 was quickly replaced with rule 2, which replaced
the exit condition, ‘‘unwind the bet when the spread is $0,’’ with a
reversal, ‘‘reverse the long and short positions.’’ Now a position was
always held, waiting on the spread to increase from a low value or
to decline from a high value.

With that expansion of trading opportunities came more trades
and greater profits for no additional work.

2.2.2 Multiple Bets

In the first quarter of 2002 the CAL–AMR spread varies over a $6
range from a high of $7 to a low of $1. Bets placed according to
rule 1 (and rule 2) experience substantial mark to market gains and
losses but do not capture any of that commotion. Since the spread
increases and decreases over days and weeks, meandering around
the trend that eventually leads to shrinkage to zero and bet exit
(rule 1) or reversal (rule 2), why not try to capture some of that
movement?

Rule 3 is designed to extract more from spreads by adding a
second entry point to that identified in rule 1. For CAL–AMR
the rule is: Make a second bet on the subsequent shrinking of the
spread when the spread increases to $6. Doubled bets on the spread
shrinkage would be made in both 2002 and 2003, increasing profit
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FIGURE 2.2 Daily closing prices, CAL and AMR (2000)

by 150 percent! (Profit is increased by a smaller percentage in 2002
over that obtained with rule 2 because rule 2 gains from the reverse
bet which is unaltered in rule 3. There was no reverse bet in 2003,
the position being carried into 2004.)

This single illustration demonstrates in blinding clarity the mas-
sive opportunity that lay before Tartaglia’s group in 1985, an era
when spreads routinely varied over an even wider range than exhib-
ited in the examples in this chapter.

2.2.3 Rule Calibration

Immediately when one extends the analysis beyond a single pair, or
examines a longer history of a single pair, the problem of calibration
is encountered. In Figure 2.2 another pair of price histories is shown,
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FIGURE 2.3 Daily closing spread, CAL–AMR

now for the single year 2000. Figure 2.3 shows the corresponding
spread.1

Wow! We should have shown that example earlier. The spread
varies over a $20 range, three times the opportunity of the CAL–AMR

1The price series for AMR is adjusted for the spinoff of Sabre, the company’s
reservations business, on March 16, 2000. Without proper adjustment, the close
price series would drop from $60 to $30 overnight—an unrealistically dramatic
spread change! We elected to adjust prices moving back in time, so that the
pre-spinoff prices are altered from the values that obtained in the market at the time,
preserving more recent prices. Trading AMR in January 2000, one would of course
have been working at the actual pre-spinoff level of circa $60. How one makes price
adjustments, forward or backward, is a matter of taste, though it must be done
consistently. Return series computed from adjusted price histories are unique and for
that and other reasons, most analysis is done in terms of returns rather than prices.
In this book, prices are used for demonstration because the elucidated points are
more graphically made therewith. Price adjustment for corporate events, including
dividends and splits, is critical to proper calculation of gains from trading.

Huahai Tan
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example examined in Figure 2.1. But right there in that rich oppor-
tunity lies the first difficulty for Rules 1–3: The previously derived
calibration is useless here. Applying it would create two trades for
Rule 3, entering when the spread exceeded $4 and $6 in January.
Significant stress would quickly ensue as the spread increased to over
$20 by July. Losses would still be on the books at the end of the
year. Clearly we will have to determine a different calibration for any
of Rules 1–3. Equally clearly, the basic form of the rules will work
just fine.

Now consider the problem of calibration applied to hundreds or
thousands of potential spreads. Eyeballing graphs would require a lot
of eyeballs. A numerical procedure, an automatic way of calibrating
rules, is needed. Enter statistics. The trading rules were divined by
visually determining the range over which the spread varied. This
is trivially computed automatically: The maximum and minimum
spread in Figure 2.1 is −$2 and $7. Allowing a margin of, say, 20
percent, an automatic calibration would give entry and exit values
of $5 and $0 for rule 1. This is not exactly what we selected
by eye, but operationally it generates similar (though richer) trades.
Critically, the procedure is readily repeated on any number of spreads
by computer.

For the second example (Figure 2.2) the spread range is $3 to $22.
The 20 percent margin calibration gives trade entry and exit values
of $18 and $7 respectively. Applying Rule 1 with this automatic
calibration yields a profitable trade in 2000. That desirable outcome
stands in stark contrast to the silly application of the example one
calibration (entry at $4 and $6 and unwind at $0 as eyeballed from
Figure 2.1) to the spread in Figure 2.2 which leads to nauseating
mark to market loss.

Calibration Epochs In the foregoing discussion of eyeball calibration,
we did not make explicit the span of time being considered, which
is two years in the first example, one in the second. Naturally,
both examples were selected to convey in stark terms the beautiful
simplicity and evident availability of the pair trading opportunity.
Nevertheless, the examples are not unrealistic. And so: How much
time is appropriate?

The stocks in Figures 2.1 and 2.2 are the same: CAL and AMR.
The question, ‘‘How much time is appropriate?’’, is now seen to be
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dramatically important continually, not just as a once-only decision
for each candidate pair. Imagine the consequences of using the
calibration of the CAL–AMR spread from 2000 for trading in
2002–2003. In this case, the consequences look benign: no trades. But
that is a negative consequence because valuable trading opportunities
are missed. In other cases, horribly costly bets would be placed using
a rule calibrated on out-of-date price history.

This question of how much price history to use to calibrate a
trading rule is critical. In contrast to the analysis described thus far,
one shot, static analysis in which the rule is applied to the same
price history as that from which it was derived, practical trading is
always an application of the past to the unknown future. In Figure
2.4, the four-year spread (2000–2003) history for CAL–AMR is
shown together with upper and lower limits, maximum −20 percent
range and minimum +20 percent range, respectively, calculated with
a look back window of three months. While these limits are, at times,
not nearly as good as the eyeball limits previously examined, they do
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FIGURE 2.4 Daily closing spread, CAL–AMR (with upper and lower trade rule
margins)
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retain good properties for trade identification. Furthermore, unlike
the previous in sample calculations, the current estimates are out of
sample projections. On any day, the only price information used in
the calculation is publicly available history. The computed limits are,
therefore, practically actionable.

Applying Rule 2, there are 19 trades (ignoring the first quarter of
2000 since the limits are computed on insufficient data), comprising
4 losing trades and 15 winning trades. Both winning and losing
trades exhibit periods where substantial mark to market losses are
incurred before gains accrue toward the end of the trade. One last
observation: Notice how the volatility of the spread has substantially
declined from 2000–2003; much will be said about that development
in later chapters.

2.2.4 Spread Margins for Trade Rules

In response to the demonstrated problem of determining operational
limits on the spread range to guide trade decisions, we chose to use
margins of 20 percent. In the three-month window the upper bound-
ary, ‘‘short the spread,’’ is max spread −20 percent range, the lower
boundary, ‘‘buy the spread,’’ is min spread +20 percent range. This
operational procedure has the great merit of ready interpretation. It is
unambiguously clear what the margins are: one fifth of the calculated
range of the spread over the previous three months.

Less satisfactory is the use of the extreme values, max and min.
Extremes exhibit great variability. Projecting extremes is therefore
subject to great uncertainty: Think of outliers and all you have read
in statistics texts about careful analysis thereof. Modeling extremes is
a complicated and fascinating area of study with applications ranging
from peak river flow for flood prediction to electricity demand for
prediction of generation requirements and the likelihood of outages,
among many others.

From the extensive variability of extremes comes the need for a
substantial margin (20 percent) for practicable trade rules. Suppose
that just the largest 10 percent of spread displacements served to
generate sufficient trading opportunities to sustain a business based
on historical analysis. It would be unwise to rely on that margin
for actual trading because of the inherent uncertainty in projecting
information into the future. Extremes in the future are certain to
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be different from extremes in the past. If a spread experiences a
‘‘quiet period,’’ business will be poor because few opportunities
will be identified even though there may be plenty of profitable
opportunities. Better to be conservative and use a larger margin. Of
course, a spread may exhibit a volatile period; the consequences there
are more volatility in mark to market revenue but not a reduction in
business or total profit.

Greater stability is obtained between extremes. Projecting the
central location of the spread is done with considerably greater confi-
dence than projecting the extremes. Therefore, most implementations
modify the ‘‘go short’’ and ‘‘go long’’ limits to be computed as offsets
from the center rather than offsets from the extremes. Bollinger bands,
mean plus or minus a standard deviation, are a classic example. In
spite of the rationale though, it is arguable how much stability is
improved by this switch of focus: The standard deviation is com-
puted from all the data, extremes included, and since observations are
squared, the extreme values actually receive proportionally greater
weight! Robust procedures are sensibly employed, which amounts to
excluding (in more sophisticated applications, down-weighting) the
most extreme values in a sample before computing summary statistics
such as the mean and standard deviation.

Extrapolating percentage points of the spread distribution, say the
twentieth and eightieth percentile, is similarly robust but is seldom
seen. Operationally it is of no practical significance in the simple
trading rules described here. Greater significance is found where
models are more sophisticated and the asymmetry of distributions
has mercenary implications.

Greater (presumed) stability is achieved at the cost of some
interpretability. There is no unique relationship between the standard
deviation of a distribution and the range. When presented with
standard deviations, many assume or don’t realize they are assuming
an underlying normal distribution and equate mean plus and minus
one standard deviation as two-thirds probability and mean plus and
minus two standard deviations as 95 percent probability. Financial
data is typically nonnormal, exhibiting asymmetry and significantly
more observations several standard deviations from the mean, the
so-called ‘‘heavy tails.’’ These tails are heavy only by comparison
to the normal distribution, not by what is typical in finance data.
The use of tail area probabilities from the normal distribution is
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therefore a frequent cause of miscalculation—and usually that means
underestimation—of risk. Most errors of this kind are trivially
avoided by using the empirical distribution—the data itself—rather
than assumed mathematical forms. Moreover, it is quite simple to
examine the fit of a normal curve to a set of data and judge the
accuracy of probability calculations for intervals of interest, be they
in the tail or center of the distribution. Chapter 5 demonstrates these
points in a discussion of reversion in price series.

With so many potentially costly errors attached to the use of
sample moments (mean and standard deviation) why is the range
so readily abandoned? What has been gained by the sophistry? In
addition to the aforesaid (almost unconscious) action on the part of
many, there is the conscious action on the part of many others that is
driven by mathematical tractability of models. Extreme values (and
functions thereof) are difficult to work with analytically, whereas
standard deviations are generally much easier. For the normal dis-
tribution typically assumed, the mean and standard deviation are
defining characteristics and are therefore essential.

While the technicalities are important for understanding and
analysis, the practical value for application in the late 1980s and
early 1990s was minimal: Reversion was evident on such a large
scale and over such a wide range of stocks that it was impossible not
to make good returns except by deliberate bad practice! That rich
environment has not existed for several years. As volatility in some
industries declined—the utilities sector is a splendid example (Gatev,
et al.)—raw standard deviation rules were rendered inadequate as
the expected rate of return on a trade shrank below transaction
costs. Implementing a minimum rate of return lower bound on
trades solved that, and in later years provided a valuable risk mana-
gement tool.

2.3 POPCORN PROCESS

The trading rules exhibited thus far make the strong statement that
a spread will systematically vary from substantially above the mean
to substantially below the mean and so forth. The archetype of this
pattern of temporal development is the sine wave. In the early years
of pairs trading, that archetype provided the theoretical model for
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FIGURE 2.5 Process archetypes: (a) sinusoidal, (b) popcorn

spread analysis, but many trade opportunities were observed to be
missed. An alternative archetype, which we shall call the ‘‘popcorn
process,’’ shown in Figure 2.5, provided new insight. Reversion to
the mean following a disturbance from that mean was more closely
focused upon. In this model, the constraint on spread motion of
undulation (even if more irregularly than the mathematical archetype)
is removed. An upward motion (move to a ‘‘distant’’ peak) may be
followed, after return to the local mean, by another excursion to a
distant peak. Similarly a decline to a distant trough may follow a
previous excursion to a distant trough without an intervening move
to a distant peak. The qualifier ‘‘distant’’ is used here to distinguish
substantive moves from the mean from minor variation about the
mean. Two troughs are by definition separated by a peak but a peak
is of trading interest only if it is sufficiently removed from the mean
such that movement back to the mean is economically beneficial.
The important point here is that a peak separating troughs can be
near the mean and is not forced or assumed to be substantially above
the mean.
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Expressing the popcorn process mathematically is more com-
plicated than writing a sine function, but not much so. If the sine
function is written:

yt = sin(t)

then the popcorn function may be similarly written:

yt = It sin(t)

where It is an indicator function taking values 1 or −1 signaling
a peak or a trough move. The math is not important here; the
insight from the description and graphical depiction of the process is:
Exploiting the popcorn process is not efficiently accomplished using
the turtle trade. In Figure 2.5, panel (b), the turtle trade rule identifies
a single trade with profit $2. The popcorn process suggests a rule that
signals to exit a trade when the spread returns to the mean, rather
than assuming it will continue beyond the mean to an extreme on
the opposite side from which the trade was entered. This new rule
identifies four trades with total profit $4. Another novel feature of
the rule is that it contains periods where no capital is committed.

All the necessary calculations for the new rule have already been
described: local mean and range of the spread. The change is to the
trade rule.

Rule 4: When the spread increases (decreases) sufficiently far
from the mean (say, k standard deviations) sell (buy) the spread;
unwind the positions when the spread returns to the mean.

Many of the more elaborate models built by statistical arbi-
trageurs, whether for pairwise spreads or more complicated functions
of stock price histories, are based on the understanding of the popcorn
process, or reversion to the mean, rather than the sinusoidal or turtle
trade process. Chapter 3 describes some of the models and modeling
considerations. The interesting phenomenon of stochastic resonance
(also described in Chapter 3) admits a valuable modification of the
exit condition in Rule 4.

2.4 IDENTIFYING PAIRS

The opportunity is huge. We have a set of operational trading rules and
automatic calibration procedures. Now, which pairs can we trade?
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Early on, stocks were grouped by broad industry classification
and every pair within those groups was a candidate. Risk management
was rudimentary with Barra models applied to constructed portfolios
and identified factor exposures offset by trades away from the pair
portfolio (using stocks or Standard and Poor’s (S&P) futures to
neutralize β exposure, for example).

Elaborations were introduced as greater control over return vari-
ability became desirable and as experience showed where structural
weaknesses lay. Individual manager preference became influential
when hedge funds began marketing pairs trading and statistical
arbitrage strategies.

Maximizing correlations was an early filter applied to pair selec-
tion: Compute the correlation of each candidate pair (using, for
example, two years of daily data) and retain only those pairs hav-
ing correlations greater than some minimum. On the assumption
that past correlation is predictive of future correlation, this filtering
eliminates pairs of stocks that exhibit little or no relationship. The
rationale holds that uncorrelated stocks are behaviorally unrelated
and, hence, unpredictable as a pair.

2.4.1 Refining Pair Selection

Reversion betting on pair spreads works best when the two con-
stituent stock prices continually move apart and together again.
That pattern of behavior, stock A increasing when stock B decreases
and vice versa, generates very low (even negative) correlation. So
from a profit or return perspective, were the early correlation filters
(searching for a high degree of correlation) quite wrong? No: In
the short term, profits may be forgone by excluding low correlation
pairs but the long-run risk situation is greatly improved. Stocks that
typically exhibit contrary or unrelated price movements are more
likely to respond disparately to fundamental market developments
than stocks that tend to move together. At some point, unrelated
stocks are very likely to create a costly pair trade.

That insight motivates a subtly different approach to the corre-
lation filter. Defining risk moments (or events) as times when a stock
price trace changes direction such that a peak or trough is formed, it
is desirable for risk minimization purposes to select pairs that show
similar event histories—peaks and troughs close in time with similar
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sized moves for the two stocks between these events. Such pairs
are less likely to react divergently (except, perhaps, in the imme-
diate aftermath) following a disturbance to the market (political,
industrial development, etc.). For profit maximization, it is desirable
that between events the two stocks develop along different price
trajectories, exhibiting as much negative correlation—moving apart,
then together—as possible. See Chapter 5 for a formal treatment of
desirable and undesirable pair correlations.

2.4.2 Event Analysis

The turning point algorithm works as follows:

1. A local maximum in the price series is a turning point if subse-
quently the price series declines by an amount giving a negative
return greater in absolute value than a specified fraction of the
local, annualized return volatility.

2. Similarly, a local price minimum is a turning point if subsequently
the price rises by an amount giving a return greater than the
specified fraction of local, annualized return volatility.

3. Look at the price trace in Figure 2.6 (General Motors, daily
adjusted prices). Given a turning point identified at a, where
is the next turning point? Point a is clearly a local minimum;
therefore, the next turning point must be a local price maximum.
Move forward in time looking at the price series from a to t.
Identify the local maximum price in the interval [a, t]; call it p.
Is the decline from the price at p to the price at t greater than
k percent of the local volatility at t (looking back)?

4. When p = m and t = t1, the answer is no. Not until b is identified
as the local maximum (t > t2) and then not until t = t3, is the
answer yes.

5. For this example, specification is for a window of 20 days to define
local volatility, an annualization factor of 16, and a turning point
qualifying fraction of 30 percent.

Figure 2.7 shows the General Motors price series again, this
time with turning points identified with a less demanding criterion:
A decline in price from a peak by 25 percent of the local volatility
qualifies the peak as a turning point. Four additional local extrema are
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FIGURE 2.6 Adjusted close price trace (General Motors) with 30 percent turning
points identified

identified (ignoring the series end point) compared with the default
30 percent criterion. Still, two local peaks and troughs in mid-1997
are not identified by the algorithm. They provide returns of about
−4 percent in a few days—a fabulous annualized rate of return.

Figure 2.8 shows the General Motors price series once more, with
an even less stringent turning point criterion: A decline in price from
a peak by 20 percent of the local volatility qualifies the peak as a
turning point. Eight additional local extrema are identified (ignoring
the series end point) compared with the default 30 percent criterion,
the same additional four identified by the 25 percent criterion plus
another four.

In other examples, changing the window length, the strict capture
by a less stringent criterion of the complete set of turning points iden-
tified by a more stringent criterion is not observed. These examples
and observations serve as reminders that the analysis here is strictly
statistical. The events reflect market sentiment but that may be driven
by news unrelated to the stock or by no identifiable cause. Finding
such reasons is an analyst’s job.
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FIGURE 2.7 Adjusted close price trace (General Motors) with 25-percent turning
points identified

Table 2.1 gives a summary comparison of the alternative event
series for the pair Chrysler (before its acquisition by Daimler) and
General Motors. The increase in return correlation for interevent
returns is striking, as are the insignificant differences across alter-
native event series. The latter is a useful property—interevent
correlations are robust (not sensitive) to the precise calibration of
the event identification algorithm. Therefore, it is not necessary to be
overly concerned about which set of events to use in the correlation
analysis as a screen for good risk-controlled candidate pairs.

Events in trading volume series provide information sometimes
not identified (by turning point analysis) in price series. Volume
patterns do not directly affect price spreads but volume spurts are a
useful warning that a stock may be subject to unusual trading activity
and that price development may therefore not be as characterized
in statistical models that have been estimated on average recent
historical price series. In historical analysis, flags of unusual activity
are extremely important in the evaluation of, for example, simulation
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FIGURE 2.8 Adjusted close price trace (General Motors) with 20 percent turning
points identified

TABLE 2.1 Event return summary for Chrysler–GM

Criterion # Events Return Correlation

daily 332 0.53
30% move 22 0.75
25% move 26 0.73
20% move 33 0.77

results. Identifying volume peaks in historical data is scarcely different
from the demonstration of peak identification in price histories
documented previously. In live trading, however, forward-looking
monitoring for patterns of increased trading volume, an important
risk management tool, is subtly different. One needs to flag volume
increase during the build-up before a peak is identifiable because
identification after the fact is usually too late for ameliorating impact
on a portfolio.
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2.4.3 Correlation Search in the Twenty-First Century

Several vendors now offer software tools for managing aspects of
pairs trading, from identifying tradable pair candidates to execution
channels and portfolio management. Correlation searches of the type
described here were manually programmed and carried out in the
1980s. No longer is this necessary. Credit Suisse First Boston, for one,
offers a tool that allows a user to optimally fit a Bollinger band–type
pair trading model to any specified pair of stocks. The program
searches over a range of fixed-width windows simulating trading of
a mean plus or minus standard deviation model; simulation ‘‘profit’’
is the metric used to compare models (data window length, Bollinger
bandwidth) and the maximum profit generating model is identified.
One can very quickly fit models to many pairs using such tools.
The dangers of relying solely on such shallow data analysis should
be immediately evident. Tools with similar capabilities are offered
by Goldman Sachs, Reynders Gray, and Lehman Brothers, among
others.

At this time, no commercial tools are known to exist that facilitate
identification of event or turning points and compute interevent
correlations.

2.5 PORTFOLIO CONFIGURATION AND RISK CONTROL

As models were developed, increasing attention was directed to
portfolio risk control. Mean–variance approaches were favored for
a long time as profits rolled in and risk was deemed ‘‘under control.’’
The folly of that thinking was rudely demonstrated in the summer of
1998, but that is getting ahead of the story (see Chapter 8).

Some modelers incorporated risk exposure calculations along
with return forecasts into the portfolio construction process directly
(see section 2.4, and the description of the defactor model in Chapter
3); others (particularly those whose model comprised a set of rules
with no explicit forecast function) first constructed a portfolio, then
calculated the exposure of that portfolio to certain defined market
factors, and controlled risk by hedging those exposures separately
from the bets constituting the portfolio.

The objective is to select a portfolio of stocks that maximizes
return to employed capital. Given perfect foresight, the optimal
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portfolio consists of maximum possible investments in the stocks
with the greatest return until available capital is exhausted. Of
course, we do not have perfect foresight. In its stead, we make do
with the best forecast we have. The goal is still to maximize actual
return but, in the forecasting guess world, we have to focus attention
on expected return.

Forecasts, unlike foresight, do not come with a guarantee of the
outcome. There is risk in acting on forecasts. A single pair spread
expected to ‘‘revert to its local mean’’ may continue to increase
beyond the point at which stop loss limits force exit from the
position. This new element, risk, complicates the goal, which now
becomes twofold: Maximize expected return and maintain the risk
of achieving that return below a certain tolerance.

So far so good. Going from foresight to forecast we exchange
certainty for uncertainty; we move from guaranteed optimization
to constrained optimization of a best guess. However, in practice
matters are not quite as straightforward as that sentence seems to
imply. The first obstacle is precisely specifying the notion of risk—or,
at least, its practical implementation. Risk arises because there is no
guarantee that a particular forecast will be borne out in reality.
Indeed, the truth is that it would be an extraordinary event if a
forecast turned out to be 100 percent accurate. Only one outcome
yields complete forecast accuracy. But there is an infinity of possible
outcomes that translate to odds of infinity to one against the forecast
being correct. Hence, the remarkable fact that a forecast is almost
certainly going to be wrong.

‘‘Go for the best’’ becomes ‘‘Go for the best guess—but bear in
mind what disasters might occur and do your best to protect against
those undesirable outcomes.’’

Just as we have to guess at the best (forecast) we have to guess
at the disasters. Typically, we do this a little differently from the
way we look for the best guess: Rather than looking for particular
disaster scenarios we look at the range of disasters—from small to
large—that may befall us. This view is encapsulated in the forecast
variance. (Scenario analysis is often used to be aware of ‘‘unlikely’’
extreme situations notwithstanding routine, daily, ‘‘risk controlled’’
portfolio construction. The distinction of extreme and routine risk is
deliberately vague.)
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The goal has, therefore, become: Maximize expected return sub-
ject to a limit on believed variation about that expected return. The
variance constraint reduces the admissible set of portfolios from the
set of all portfolios to the set of portfolios for which the expected
variation of the expected return is below some threshold.

It is crucial not to lose sight of the fact that all these quantities—
forecast returns and variances thereof—are uncertain. The forecast
variance guides us as to how much the outcome may reasonably be
expected to deviate from the best guess. But that forecast variance
is itself a guess. It is not a known quantity. And remember what
was stated only two paragraphs ago: Forecast variance characterizes
average behavior; anything is possible on any given instance.

With all those cautionary remarks having been said, it is true
that we are using a forecast constructed in the belief that it has
some predictive utility. That, on average—but not in any particular
case or set of cases—the forecasts will be better guesses of future
events than random guesses. And that the range of variation of
outcomes about the forecasts is reasonably quantified by the forecast
variances—again, on average.

Finally we are in a position to make operational the notion
and quantification of risk. We defined the risk of a portfolio as the
expected variance of that portfolio. Our aversion to risk is then taken
to be a constant multiple of that variance. Thus, the goal becomes:
Maximize expected return subject to a limit on expected variance
of return.

Let us express these results in mathematical form. First, definition
of terms:

n Number of stocks in investment universe
f i Expected forecast return for stock i; f = (f1, . . . , fn)′

! Expected variance of returns, V[f ]
ip Value to be invested in stock i; p = (p1, . . . , pn)′

k Risk tolerance factor

Now the goal is expressed as:

maximize p′f − kp′!p
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2.5.1 Exposure to Market Factors

Statistical arbitrage fund managers typically do not want a portfolio
that takes long positions only: Such a portfolio is exposed to the
market. (A pairs trading scheme, by definition, will not be biased but
statistical arbitrage models more generally readily generate forecasts
that, unless constrained, would lead to a portfolio with long or
short bias.) If the market crashes, the value of the portfolio crashes
with it. This much we can say regardless of the precise composition
of the portfolio. Given a desire for a market neutral strategy, the
goal is to pick off moves in stock prices after allowing for overall
market movement. That begs the question of how one defines ‘‘the
market.’’ Conventionally, the S&P 500 index is taken as (a proxy to)
the market. Each stock in the portfolio is statistically examined to
quantify the stock’s exposure to the S&P index. These quantifications
are then used to determine a portfolio’s exposure to the market.
Market neutrality is achieved by altering the proportions of stocks in
the portfolio.

Make the definition:

li Exposure of stock i to the market; l = (l1, . . . , ln)′

Then the market exposure of the portfolio p is:

market exposure = p′l

With the desire for market neutrality, the objective function is modi-
fied to:

p′f − kp′!p − λp′l

where λ is a Lagrange multiplier (relevant only to the optimization).
The neutrality desire is extended from the market as a whole to

include market sectors. We want to avoid overall exposure to, for
example, the oil industry. This is accomplished in the same way as is
market neutrality: Define exposures of stocks to ‘‘the oil industry.’’
Notice that this is a more general notion than simply defining an
index for the oil industry and exposures of oil industry stocks to that
index. Potentially every stock, oil industry or not, has an exposure
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to the oil industry market factor. Given this set of exposures, the
objective function extends in a similar way as for the market factor.

Make the definition:

l1,i Exposure of stock i to the oil industry; l1 = (l1,1, . . . , l1,n)′

The objective function is extended to:

p′f − kp′!p − λp′l − λ1p′l1

where λ1 is another Lagrange multiplier.
Obviously, other market factors may be included in the objective

function to ensure zero portfolio exposure thereto. For q market
factors, the objective function is:

p′f − kp′!p − λp′l − λ1p′l1 − · · · − λqp′lq

Determining the portfolio that maximizes the objective function is a
straightforward application of the Lagrange multiplier method.

2.5.2 Market Impact

We forecast IBM stock to yield annualized return of 10 percent over
the next week. The forecast is more certain than any forecast we have
ever made. We want to buy $10 million worth of stock. Ordinarily,
a demand of that size will not be filled at the current offer price; most
likely the offer price will rise as the demand is filled. This is market
impact. Market impact is incurred with most trades, regardless of
size, since the market is not static between the time a forecast is
made (using the latest available price) and the time the desired trade
is placed and subsequently filled. Without actual trading history, it
is impossible to gauge market impact. Even with trading history,
it is possible only to make a guess: Once again we are forecasting
an uncertain event. (See Chapter 10 for recent developments with
critical implications for statistical arbitrage.)

The importance of market impact is great. A good estimate of
the likely realizable fill price for desired trades enables the trading
system to filter potentially unprofitable trades from the portfolio
optimization.
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Immediately, a question arises: Is market impact not subsumed in
the construction of the forecast function? Superficially only. There is
an implicit assumption that the stocks can be traded instantaneously
at the current price. Okay, but why should the time delay to complete
a physical trade result in a cost? Should we not expect that some
prices will go with the desired trade and some against, with every-
thing averaging out over numerous trades on many days? Again,
superficially only. Our participation in the market is not accounted
for in the model building process. A buy order from us adds to
demand, dragging up price; the opposite for a sell order. Thus, our
own trading introduces a force against us in the market. So our
forecasts are really only valid providing we do not act on them and
participate in the market.

One might ask that, since the goal is to build a forecast model that
is exploitable, why not include the information that the forecasts will
be traded into the model building? The short—and probably also the
long—answer to that is that it is just too difficult. (Equivalently, the
necessary data is unavailable; see Chapter 10 for what is possible,
even routine for a select few, at present.) The pragmatic expedient is
therefore to build a forecast that is expected to be valid if we remain
a passive observer, then make an adjustment for the effect our active
participation is likely to have.

Market impact is a function of what we decide to trade. Denot-
ing the current portfolio by c, the objective function is extended
generically to:

p′f − market impact(p − c) − kp′!p − λp′l − λ1p′l1 − · · · − λqp′lq

Determining the functional form of ‘‘market impact’’ is an unsolved
research problem for most participants because of inadequate data
(typically restricted to one’s own order and fill records) and, in some
cases, lack of motivation. Again, see Chapter 10 for more recent
developments.

2.5.3 Risk Control Using Event Correlations

In the preceding section we explored the idea of event correlations
as a basis for identifying collections of stocks that existentially share
common risk factors: Stocks repeatedly exhibit directional price
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change at the same time, in the same orientation, and move by a
similar amount between such changes. Within a group, stocks have
similar elasticity to news or what one might call ‘‘event betas.’’

Building a portfolio that is matched dollar-for-dollar long and
short from dollar-matched portfolios built from groups of stocks
characterized by similar event betas automatically incorporates sub-
stantial risk control. Each group defines a collection of stocks that
have repeatedly exhibited essentially the same price reaction to eco-
nomic developments meaningful for those stocks. The key feature
here is the repeated nature of the moves. To bowdlerize Ian Fleming,2

once is happenstance, twice is coincidence, the third time is common
risk exposure. A portfolio thus formed has a low probability of
experiencing large loss generating disparate moves of constituent
stocks in response to a market shock. After the terrorist attacks on
the United States in 2001, event beta–neutral portfolios of large
capitalization stocks exhibited only mundane volatility in valua-
tion despite the dramatic market decline and spike in individual
stock volatility.

2.6 DYNAMICS AND CALIBRATION

The reversion exploitation model is applied to local data. For
example, estimated interstock volatilities are calculated using a
weighting scheme, discounting older data (see Chapter 3). In the
trade rules examined earlier in this chapter, we chose a 60-day
fixed-length window and computed trade limits on spreads as a
function of the spread range (a) directly, and (b) using the empirical
standard deviation of the spread distribution. These daily updated
estimates adjust current trade entry and exit points. Similarly, daily
updated liquidity estimates modify trade deal size and portfolio con-
centration. Thus, even with an unchanged model there is continuous
adaptation to local market conditions.

Occasionally the model is recalibrated (or a manager ‘‘blows
up’’). Recall the CAL–AMR spread, which changed radically from
$20 in 2000 to $6 in 2002.

2Spoken by Auric Goldfinger to James Bond in Ian Fleming’s Goldfinger.
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The techniques of evolutionary operation (EVOP) can be
employed to help uncover persistent changes in the nature of the
reversion phenomenon exploited by a model. Reversion is exhibited
by stock price spreads on many frequencies (Mandelbrot, fractal
analysis), one of which is targeted by a modeler’s chosen calibra-
tion, that choice being dictated by factors including robustness of
the response to small changes in parameter values, modeler’s pref-
erence, research results, and luck. Applying EVOP, several other
frequencies (model calibrations) are monitored in tandem with the
traded model to provide information on changes in the nature of the
response across frequencies. There is always noise—one frequency
never dominates nearby frequencies in terms of actual and simulated
trading performance month after month. It is crucial to understand
the normal extent of this noise so that apparent (recent) underper-
formance by the traded model vis-à-vis a nearby (in model space)
competitor model is not misinterpreted as a need for a model change.
There is also evolution. Over several years, trends in the reversion
response as revealed through comparative model performance stand
out from the local variation (noise). When identified, such a trend
should be adapted to—the traded model calibration revised.

Analysis of a classic pair-trading strategy employing a first-order,
dynamic linear model (see Chapter 3) and exhibiting a holding
period of about two weeks applied to large capital equities shows a
fascinating and revealing development. In March 2000 a trend to a
lower frequency that began in 1996 was discovered. First hinted at in
1996, the scale of the change was within experienced local variation
bounds, so the hint was only identifiable later. Movement in 1997 was
marginal. In 1998, the problems with international credit defaults
and the Long Term Capital Management debacle totally disrupted
all patterns of performance making inference difficult and hazardous.
Although the hint was detectable, the observation was considered
unreliable. By early 2000, the hint, there for the fourth consecutive
year and now cumulatively strong enough to outweigh expected
noise variation, was considered a signal. Structural parameters of
the ‘‘traded’’ model were recalibrated for the first time in five years,
a move expected to improve return for the next few years by two
or three points over what it would otherwise have been. Simulation
for 2000–2002 significantly exceeded that expectation as market
developments caused a decline in performance of higher frequency
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compared with lower frequency strategies. See Chapter 9 for a
detailed discussion of the issues involved.

2.6.1 Evolutionary Operation: Single
Parameter Illustration
Evolutionary operation for a single parameter is illustrated in the four
panels of Figure 2.9. Panel (a) shows an archetypal response curve:
For a range of possible values for a model coefficient, the (simulated)
return from operating the strategy shows a steady increase tailing off
into a plateau then quickly falling off a cliff. One would like to identify
the value of the parameter for which return is maximized—and that is
simple when analyzing past data and when the response relationship
is invariant.

Panel (b) illustrates what one observes in practice. Every year
the response is different. Similar—that is why strategies work more
often than not—but different. When selecting a parameter value at
which to operate a strategy, it is critical to understand both the form
of the response curve and the natural amount of variation and relate
these to understanding of the phenomenon under study—reversion
in this case—when it is available. Picking the return-maximizing
value of the parameter from panel (a) is risky because in some years
the response curve shifts sufficiently that model performance falls off
the cliff. Risk management operates at the model calibration stage,
too: Back away from the cliff and settle for generally good years and
low risk of a catastrophe rather than occasional outstanding years
and occasional disasters. One should expect that disasters will occur
from uncontrollable factors: Admitting large probabilities of disaster
from ‘‘controllable’’ factors is not a sound risk management policy.

Panel (c) shows an archetypal evolution in response: The general
form moves smoothly through space over time (and the form may
itself smoothly change over time). In practice such evolution, when
it occurs, occurs in conjunction with normal system variation as
just seen in panel (b). Experience is thus like a combination of the
movements in panels (b) and (c), illustrated in panel (d).

As the response curve changes over time, a range of the parameter
space consistently yields good strategy performance. Every year is
different and over time the parameter range to aim for gradually
moves. The original range continues to deliver reasonable perfor-
mance, but becomes less attractive over several years. Evolutionary
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FIGURE 2.9 Evolutionary operation: detecting sustained system response change

operation, the continual monitoring of system performance away
from the currently believed best calibration, enables one to identify
transient and persistent system response changes. Transient changes
provide information to update the view of normal system response



36 STATISTICAL ARBITRAGE

variation; enduring system response changes can be adapted to,
improving long-term system performance.

As just exemplified, evolutionary operation monitoring looks
beguilingly simple—and, indeed, the concepts and rote application
are straightforward. Unsurprisingly, reality is more complex. The
time scale and timing of change may differ from the annual focus
explicitly used here. And, of course, models are typically defined by
a collection of parameters, not just one.

Years are somewhat artificial and arbitrary time periods in this
monitoring context. Change can occur abruptly within a calendar
year (September 11, 2001) or slowly over one or more years. Mon-
itoring aspects of a strategy that reveal diagnostic information at
different frequencies is another critical task.

Statistical arbitrage models have several critical defining param-
eters. The monitoring scheme is complicated because there are
interaction effects: The impact of a change in one parameter depends
upon the settings of other parameters. The scheme of continual assess-
ment of the performance of alternative model calibrations must be
designed to reveal changes in those interactions as well as changes in
the direct response of strategy performance to individual parameters.

More complicated models that involve several steps of analy-
sis formally may include hundreds or even thousands of estimated
parameters. Conceptually, the monitoring problem is ostensibly the
same: One is looking for evidence of change other than transient
noise over time. The practice is yet more complicated than for mod-
els with handfuls of parameters because these high-parameter-count
models often lack manageable interpretability of individual param-
eters. Answering the question, ‘‘What does change X in parameter
θ signify?’’, is impossible. Indeed, with such models even positing
the question is difficult. Groups of parameters may have a collective
interpretability in which case understanding can be built component
by component, sometimes with a hierarchical structure.

To close this section, it is worth reiterating an important point:
Underpinning monitoring activity, from mechanics to interpretation
to action, is understanding of the phenomenon being exploited—why
it exists, what drives the opportunities, and how exploitation works
in the context of the model.



CHAPTER 3
Structural Models

Private information is practically the source of every large
modern fortune.

—An Ideal Husband, Oscar Wilde

3.1 INTRODUCTION

T he discussion in Chapter 2 is couched largely in terms of trading
rules based on estimates of spread ranges calculated on moving

windows of data history. Figure 3.1 shows the bands calculated as
mean plus or minus one standard deviation using a window of 60
days for the CAL–AMR spread. (Compare this with Figure 2.4,
wherein the limits are calculated using the maximum −20 percent
range and minimum +20 percent range over a 60-day window, and
review the discussion in Section 2.2.) Implicit in these trading rules
is a forecast that the spread will in the near future return to the local
mean. Figure 3.2 shows the CAL–AMR spread again, this time with
the implied forecast function.

In formal terms the point forecast, or expected value, for every
future time period is the currently estimated mean value. Now it is
not really believed that the spread will actually equal the mean each
time period, or even one time period in the near future. (Obviously
the trading rules anticipate systematic variation above and below the
mean.) It is simply that the best guess based on using the moving
average model is that in the near future, the spread will likely exhibit
values centered on the mean. How near is ‘‘near’’ remains, like so
much else, unspecified.

37
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FIGURE 3.1 Daily closing spread, CAL–AMR, with standard deviation trade
boundaries

The mean plus or minus standard deviation trading rules were
not compiled by formal statistical model building. Rather, simple
eyeballing and a little thinking lead to the hypotheses, expressed as
trade rules, which turned out to work satisfactorily. Nonetheless,
the rules constitute a model with the forecast function interpretation
just cited.

The CSFB tool, mentioned in Chapter 2, goes a little further than
our eyeballing and systematically searches through many alterna-
tive model specifications—window length and number of standard
deviations for trade entry boundaries. This model fitting or selection
procedure implicitly uses a utility maximization criterion, maximize
simulated trading profit, instead of a statistical estimation procedure
such as maximum likelihood or least squares. That is a sophisticated
approach, unfortunately undermined by the sole focus on in-sample
calculations. Effectively, the utility function is misstated for the pur-
pose of identifying models that might be expected to do somewhat
reasonably in practice. What is really of interest is maximizing profit
out of sample with some regard to draw-down limits, mimicking
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FIGURE 3.2 Daily closing spread, CAL–AMR, with moving average forecast
function

actual use of divined trading rules, but those considerations begin to
take the tool in the direction of a strategy simulator, which is not
likely to be offered free of charge.

3.2 FORMAL FORECAST FUNCTIONS

The value of thinking about a formal forecast function is that it
gives a specific set of values to compare to realizations and thereby
to judge the efficacy of model projections. Mark to market losses
on a trade will indicate the presence of a potential problem; the
pattern of forecast–outcome discrepancies provides information on
the possible nature of the problem. Such information admits a richer
set of responses to loss situations than a blunt stop loss rule such as
a simple percentage loss.

In this chapter, we will consider a few of the structurally simplest
classical models for time series data. One or two non–time-series-
model architectures will also be described illustrating somewhat more
involved modeling of stock price data.
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3.3 EXPONENTIALLY WEIGHTED MOVING AVERAGE

Moving average, or MA, models are familiar from Chapter 2. A
more flexible scheme for local smoothing of series is the exponentially
weighted moving average, or EWMA. In contrast to the fixed window
of data with equal weights of the MA, the EWMA scheme applies
exponentially declining weights to the entire data history. Recent
data thereby have the most influence on the current estimate and
forecasts, while large events in the remote past retain influence. The
form of the projected forecast function (for k = 1, 2, 3, . . . , n steps
ahead) is, like that of the MA, a straight line. The value is different,
however. An EWMA is computed recursively as:

xt = λxt−1 + (1 − λ)yt−1

where yt is the observation at time t, xt is the EWMA estimate, and
λ is the discount factor. The size of the discount factor 0 ≤ λ ≤ 1
dictates how fast older observations become irrelevant to the current
estimate (equivalently, how much data history contributes to the
current estimate).

The recursive form of the EWMA forecast calculation immedi-
ately reveals a simplification over MA schemes. Only the current
forecast xt needs to be retained to combine with the next observa-
tion for updating the forecast. While computers don’t care whether
one or twenty or fifty pieces of information have to be retained in
memory, people do. In fact, the moving average can be expressed
in a recursive fashion that requires only two pieces of information
to be carried so the efficient memory support is unfairly hijacked
by EWMA. Much more compelling are the advantages demonstrated
below; once familiar with exponential smoothing for forecasting, you
will want to consign your moving average routines to the ‘‘obsolete’’
folder.

Figure 3.3 shows the CAL–AMR spread with EWMA(0.04) and
MA(60) forecast functions. The EWMA discount factor, 0.04, was
selected specifically (by eye—a formal closeness criterion such as
minimum mean square could have been employed but this context
simply doesn’t require that degree of formalism) to give a close match
to the 60-day moving average. Only when the raw series (the spread),
changes dramatically, do the two forecast functions differ by an
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FIGURE 3.3 CAL–AMR spread with EWMA and MA forecast functions

appreciable amount. Table 3.1 gives EWMA discount factors that
produce similar local mean estimates to a range of moving averages
(for ‘‘well behaved’’ data series).

The utility of the EWMA’s flexibility is starkly apparent in two
situations where reversion plays fail: step changes and trends in
spreads. Figure 3.4 illustrates the situation where a spread suddenly
narrows and subsequently varies around the new, lower mean value.
The mean and standard deviation bands (using a 20-day window)
indicate that the long bet entered on September 7 incurred a large

TABLE 3.1 EWMA–MA
equivalences

MA(k) EWMA(λ)

10 0.20
30 0.09
60 0.04
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FIGURE 3.4 Level change in spread and MA-EWMA forecast functions

mark to market loss, $11, at the time of the spread decrease and
eventually the bet closed at a loss of that magnitude on October 11
(assuming a popcorn process model). Using the EWMA instead of
the MA is of negligible difference. The flexibility advantage shows
up as soon as we introduce forecast monitoring and intervention.

When the large forecast error occurs (the day of the unusual
spread decrease) the monitoring system is triggered, alerting the
modeler to a potential violation of model assumptions, and hence,
invalidating the forecasts. Upon further investigation, the modeler
might discover a fundamental reason for the spread behavior, which
might lead to a decision to terminate the trade. (No search was
necessary on September 17, 2001 but decisions on whether to hold or
exit bets were critical to manager performance.) Figure 3.5 illustrates
a forecast function in which the historical development of the spread
is discarded in favor of a single new observation. Forecast uncertainty
would typically be large, illustrated by the wide limits.

If no information is discovered, a reasonable action is to watch
closely how the spread develops over the next few days (still looking
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FIGURE 3.5 Intervention forecast function

for fundamental news, of course). If the spread begins migrating
back to the pre-shift range, then no action is necessary. If the spread
continues to move around the newly established level, then the
model forecasts can be improved by introducing that knowledge
to the model. With the EWMA it is straightforward to make the
adjustment. By increasing the discount factor for just one period,
giving more weight to recent spread values, the forecasts quickly
become centered around the newly established level, as shown in
Figure 3.6. Judgments of the value of the open bet, and of new bets,
are improved much sooner than otherwise. The open bet is exited
sooner, on September 21, still at a loss but the capital is freed up and
the position risk eliminated. Profitable new bets are quickly identified
which, without the adjustment, would have been missed while the
routine model played catch up: September 27 through October 2 and
October 8 through October 10 for a combined gain of $3.64.

Forecast monitoring and model adjustment are also feasible
with the MA model but the practicalities of the adjustment are
considerably more awkward than the one-time use of an intervention
discount factor in the EWMA. Try it and see!
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FIGURE 3.6 Post-intervention forecasts

From where did the value of the intervention discount come?
Many sophisticated and fascinating control schemes exist in the
engineering literature, but for our purposes a simple calibration
procedure can be used. From a collection of spread histories, isolate
the points at which step changes in the spread occurred. Experiment
with a range of intervention discount factors until the pattern of
forecasts across all the cases is adequate. (Once more, subjective
terms such as ‘‘adequate’’ are left to your interpretation.)

How large a spread is indicative of possible level shift? Look
again at your data: Three standard deviations from the mean occurs
how often? How many false monitor alarms would ensue with that
calibration? What about four standard deviations? How many level
shifts are missed? With what consequences for spread bets? It is
not useful to rely on probabilities of standard deviation moves for a
normal distribution—3 standard deviations from the mean occurring
0.2 percent of the time—because spreads are typically not normally
distributed. To see this, form the daily spread data from your favorite
pair into a histogram, overlay the best fitting normal density curve
(match the sample mean and variance). Examine the quality of the fit
in the tails and in the center of the density.
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Figure 3.7 illustrates a common situation. Daily returns from a
sample of six months of the CAL–AMR spread (December 2001
through May 2002) are displayed in a histogram; a normal den-
sity curve is fitted to the sample mean and standard deviation is
superimposed. I leave the commentary to you.

Empirical experimentation is a sounder approach to developing
understanding than blind assumption of normality, and a good place
from which to build a representative formal model if that is your goal.
Chapter 5 debunks some common misconceptions about underlying
distributions and reversion in time series data.

A more detailed discussion of forecast monitoring; intervention
and automatic adaptation schemes, including likelihood based tests
instead of the rudimentary standard deviation rules suggested here;
and evidence accumulation strategies is given in Pole et al., 1994. That
volume details the class of models known as dynamic linear models
(DLM) which contain as special cases MA and EWMA models,
and also autoregressive models that feature prominently in some
statistical arbitrageurs’ offerings. The structure of the DLM provides
for a rather richer analysis than anything discussed in this volume.
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In Chapter 9, Section 2, a situation that practically screamed
for intervention is related: the forced liquidation of $4.4 billion in
October 2003 because of massive redemptions in response to the
New York attorney general’s investigation of Janus for mutual fund
market timing activities. Expected market reaction to the terrorist
attacks on the United States in September 2001 is a fine example of
the need for careful review and the value of well designed, selective
intervention.

Not all changes of level are as dramatic as in the preceding
example. Often a new level is reached after a migration over several
days rather than in a single, outsize leap. The British Petroleum
(BP)–Royal Dutch Shell (RD) spread shown in Figure 3.8 exhibits
several such migrations. Two EWMA forecast functions are illus-
trated. The first is a standard EWMA with discount factor 0.09
(which is similar to a moving average on 25 days except at times of
significant change where the MA lags the EWMA’s adjustment to
the data, as previously remarked), which adapts rather slowly to the
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FIGURE 3.8 Trend detection and level adjustment
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$4 change in spread level in the first quarter of 2003. The second
is an EWMA that switches to a high discount factor when a level
shift is detected to be underway. The increased pace of adaptation
is evident in the downward shift of the spread in February 2003,
the two subsequent shifts upward in April and June, and another
downward shift in late July.

For this demonstration, the switching rule is quite crude: When
the spread exceeds a one standard deviation margin from the basic
EWMA for several days in succession, use the high discount factor for
faster adjustment. (The local standard deviation is computed using
EWMA smoothing.)

Before leaving the BP–RD spread, take another look. Over the
whole year, the spread exhibits a nicely controlled sinusoidal-like
variation about a mean of $5. What do you make of that?

3.4 CLASSICAL TIME SERIES MODELS

There are many books on the market that describe models for
characterizing time series and making forecasts. A few are listed in
the bibliography and those are your first stopping point for a detailed
understanding of model forms, statistical estimation and forecasting
procedures, and practical guidance on data analysis and model
building. In this section we give heuristic descriptions of several
model types that have been successfully employed by statistical
arbitrageurs. The discussion will be grounded in the context of
the spread and reversion descriptions and archetypal underlying
processes (sinusoidal and popcorn).

3.4.1 Autoregression and Cointegration
Probably the most commonly applied time series model structure in
any field is the autoregressive model. Future values of a series are
projected as weighted averages of recently exhibited values in that
series. Examples already seen include the moving average and the
exponentially weighted moving average.

The autoregressive model of order p relates the series outcome
at time t to a linear combination of the p immediately preceding
outcomes:

yt = β1yt−1 + · · · + βt − pyt − p + ϵt
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The coefficients, β i, or model parameters, are determined by estima-
tion from a set of observations of the series. The final term, ϵt is the
so-called ‘‘error term’’ in which is conveniently gathered all the vari-
ability that cannot readily be subsumed in the structural part of the
model. This is the term typically assumed to be normally distributed
when standard estimation methods are applied and properties of
parameter estimates or forecasts are discussed.

Autoregressive models often appear as ARIMA models, which
stands for autoregressive integrated moving average. The classic, and
unsurpassed, reference is Box and Jenkins (1976). A moving average
model in this context is, confusingly, somewhat different from the
moving average previously encountered. Here it is really a shorthand
way of writing a very long moving average of a series past values
using a mathematical equivalence to an average of a few imaginary
terms. That is quite a mouthful as well as brain fag so we will not
pursue it here.

And what of the ‘‘integrated’’ part? That is simply a differencing
operation applied to a series before investigating autoregression
structure. For example, daily differences in prices, zt = pt − pt−1 in an
obvious notation, might exhibit autoregression structure. The model
for the raw price series is then called an integrated autoregression.
The EWMA forecast function, while originally developed in the
logical, data analytic way for smoothing variable observations as we
introduced it earlier, is actually derivable as the optimal forecast for
an integrated model.

This leads nicely to cointegration. Often several series are observed
to move together in ways suggestive of a relationship; common situa-
tions include (a) one series driving another, and (b) several series driven
by common underlying processes. Multivariate forms of
ARIMA models can represent very complicated structures of this sort
including contemporaneous and lagged feedback relationships.

A structure familiar to spread modelers (but perhaps not known
by its technical name) is cointegration. Where two (or more) series
are nonstationary individually but their difference (the spread, in our
context) is stationary (think of that as meaning ‘‘approximated in
good measure by an autoregression’’), the series are called cointe-
grated. The difference (and it may be a difference other than the
first though we will not pursue that here) is well modeled by an
autoregression.
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A related class of autoregression models provides parsimonious
structural forms for series with long-term serial correlation depen-
dencies. Long-term correlation can be directly captured by a very
high order autoregression, but estimation problems ensue because
of the high parameter count. Autoregressive fractionally integrated
moving average (ARFIMA) models overcome the parameter count
problem, essentially fitting ARMA models to series after fractionally
differencing.

3.4.2 Dynamic Linear Model

All of the models discussed in the preceding section rely on a
considerable degree of stationarity in data series for their efficacy.
Model parameters are estimated over a long history of data and are
supposed to be unchanging. In financial practice, it is seldom that
relationships in data are even approximately unchanging for any
length of time. Parameter updating procedures are universal, refitting
models to moving windows of data, a commonly used (and useful)
device. The local mean and volatility calculations used in Chapter 2
exemplify the procedure.

A flexible model structure that directly embodies temporal move-
ment in data defining qualities, local mean for example, is the dynamic
linear model. In the DLM, temporal change in model parameters is
explicitly included through the specification of an evolution equation.
Consider a first order autoregression:

yt = βyt−1 + ϵt

in which the realizations of a series are composed of two parts:
a systematic propagation of a fixed portion of the immediate past
defined by the parameter β, and a random addition ϵt. Now consider a
flexible generalization of that model in which the systematic element
propagated sequentially may vary in magnitude period by period.
The parameter β is now time indexed and its variation is strictly
formalized so that evolution is permitted but revolution is not.
The dynamic model is specified by two equations, one defining the
observation sequence and one defining the systematic evolution:

yt = βtyt−1 + ϵt observation equation

βt = βt−1 + ωt system equation
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In the system equation, the term ωt is a random term that controls,
by the magnitude of its variance, how fast the regression coefficient
βt can change. With ωt identically zero, the dynamic model reduces
to the familiar static model. With a ‘‘large’’ variance for ωt, the
data series history is immediately discounted so that βt = yt/yt−1.
You may begin to see how intervention in the dynamic linear model,
exemplified for the EWMA model in Section 3.3, is implemented.

The DLM includes ARIMA, EWMA, and regression models as
special cases, making it a rich, flexible class with which to work.
Monitoring and intervention strategies are readily defined for each
model component separately and in combination. See, Pole, et al.
for examples.

3.4.3 Volatility Modeling
Volatility modeling has an extensive pedigree in quantitative finance.
Use in statistical arbitrage is less direct than in derivative valuation
where most theoretical development and published applications are
seen, but it is nonetheless helpful. Consider just the simple spread
modeling that provides much of the background of the discussion in
this book: The variance of the return stream determines the richness
of potential bets (the basic viability of candidate raw material for a
strategy), variability of mark to market gains and losses while a bet
is extant (the risk profile of a strategy, stop loss rules), and return
stretching by stochastic resonance (see Section 3.7).

Generalized autoregressive conditional heteroscedastic (GARCH)
and stochastic volatility models loom large in the modeling of volatil-
ities. The derivatives literature is replete with variants of the basic
GARCH model with acronyms ranging from AGARCH through
EGARCH to GJR GARCH, IGARCH, SGARCH and TGARCH.
GARCH models are linear regression models with a nonlinear struc-
tural specification for the error variance. The error variance, in other
models assumed to be a constant or a known function of some aspect
of the model or time (see the discussion of variance laws in Pole,
et al.), is specified to be a linear function of the error term in the basic
regression function. Consider, again, the first-order autoregression
and now add a first-order GARCH component:

yt = βyt−1 + ϵt, et ∼ N(0, ht),

ht = α0 + α1ϵ
2
t−1
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The notation, et ∼ N(0, ht) means that the (error) term et is assumed
to be randomly distributed according to the normal distribution with
mean 0 and variance ht. (The ‘‘TGARCH’’ model uses a Student t
distribution in place of the normal for smoother response to ‘‘large’’
deviations.) In this model, the disparity between a forecast and
the corresponding outcome feeds directly into subsequent forecast
variance. A large forecast error ‘‘forces’’ the model to anticipate
forthcoming large volatility. That, in turn, means that less weight
will be accorded to the next observation in updating parameter
estimates. Therefore, when a model with GARCH error structure is
fitted to data that exhibits volatility clusters (bursts of higher than
normal volatility) the weight given to the more variable observations
in estimating the structural part of the model is reduced relative to
the weight given to less variable observations.

In contrast to weighted estimation procedures, which assume a
known functional form of variance variability (such as the ‘‘level to
the power 1.5’’ which arises often in product sales data being the
result of a compound Poisson process), the GARCH model estimates
the changing pattern of variation along with the structural part of
the model. The pattern of variability is not specified ahead of time,
but a rule of recognition is: Large forecast–outcome discrepancies
signify large volatility.

Models may include greater lag structure—more ϵt−k terms much
like higher order autoregression models for mean structure. Inter-
pretation of such models is difficult and, unsurprisingly, successful
applications are largely restricted to low lag structures.

There is an enormous literature on GARCH models, begin-
ning with Engle’s 1982 paper, with applications in macroeconomics
and finance.

3.4.4 Pattern Finding Techniques

Exploiting persistent patterns of stock price behavior has been
approached directly through pattern finding procedures including
neural networks and wavelets. Wavelet analysis, a sort of local-
ized Fourier analysis, decomposes a time series into a collection of
locally orthogonal basis functions with weights appropriate to the
raw series in question. A neural network is a collection of weighted
transformation functions; there is no explicit temporal structure but
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such structure is implicit in the transformation of the inputs (past
observations of a series) to the output (forecasts).

Neural networks are excellent tools for finding patterns in data.
Where patterns recur, network forecasts can be extraordinarily good.
A major drawback though is the lack of interpretability. While it is
possible to disentangle the transformations in a small network (at
most a single hidden layer, only a handful of nodes per layer, well
behaved transfer functions) and thereby attach theoretical under-
standing, this is not the routine situation. And what of that? If a
neural network successfully identifies predictive footprints in stock
price data, what does it matter if the intellectual grasp of the
input–output transformation is looser than a competitor’s model
built from autoregressions applied to (say) factor residuals (Section
3.6)? It may not matter at all and we leave the contentious matter to
your consideration.

A great advantage of neural networks is their flexibility, which
is the reason they are such good pattern identifiers to begin with.
When structural change occurs, neural networks can be very quick
to identify that a change is underway and subsequently characterize
newly stable patterns. The attendant danger, always a partner of such
flexibility, is that identified patterns may be ephemeral, their existence
fleeting in terms of usable exploitation opportunities. Borrowing from
Orwell’s fancy: description yes, prediction no.

3.4.5 Fractal Analysis

We refer the interested reader to the inventor, Benoit B. Mandelbrot
2004, who tells it best.

3.5 WHICH RETURN?

Which return do you want to forecast? The answer may seem obvious
if you have a particular context in mind: Forecast return for today
and trade around that. In general the answer is not obvious outside
the context of theory, data analysis, and trading goals. Let’s assume
that the latter is simply to maximize strategy return (subject to some
risk controls that will be left unspecified here). Without theoretical
guidance, we might proceed simply to explore some traditional time
scales, investigating patterns of daily, weekly, or monthly return.
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A little more thought might suggest investigating how return evolves
with duration: Examining returns for 1, 2, 3, . . . ,k days might indicate
a natural time period for a particular type of series, whether it is
individual raw stock prices or functions thereof such as factors (see
Section 3.6); one might also want to examine the maximum return
over the next m days.

Pattern matching models, more elaborate and technically demand-
ing than the models discussed in this book, lead one to consider more
general, multivariate functions of stock return series.

3.6 A FACTOR MODEL

The modeling discussion thus far has focused on spreads between
pairs of stocks, the domain where statistical arbitrage, as pairs
trading, had its genesis. Now we will discuss some modeling
ideas applied to individual stock price series analyzed as a
collection.

The notion of common risk factors, familiar from Barra-type
models, lies at the heart of so-called factor models for stock returns:
The basic idea is that returns on a stock can be decomposed into
a part that is determined by one or more underlying factors in the
market (and in common with other stocks) and a part that is specific
to the stock, so-called idiosyncratic return:

stock return = return to market factors + idiosyncratic return

Early models formed using this decomposition simply identified
market factors as industries (the S&P industry sectors) and a general
market factor. Some modelers used indexes as proxies for the factors,
building multiple regression models, autoregression models, or other
models for daily, weekly, or monthly returns; they also fashioned
forecasts from (a) forecast models for indexes (b) the constructed
regression (etc.) models, and built portfolios accordingly.

Later attempts used a more general model called a statistical
factor model. In a factor model, the factors are estimated from the
historical stock return data and a stock’s return may be dependent
on, or driven by, several of these factors.
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3.6.1 Factor Analysis
A factor analysis of a multivariate data set seeks to estimate a
statistical model in which the data are ‘‘explained’’ by regression
on a set of m factors, each factor being itself a linear combination
(weighted average) of the observables.

Factor analysis has much in common with principal component
analysis (PCA) which, since it is more familiar, is good for compar-
ison. Factor analysis is a model based procedure whereas principal
component analysis is not. PCA looks at a set of data and finds those
directions in observation space in which the data exhibits greatest
variation. Factor analysis seeks to estimate weights for a set of linear
combinations of the observables—so-called factors—to minimize
discrepancy between observations and model fitted values.

If the distinction between PCA and factor analysis seems hazy,
good. It is. And we will say no more about it.

Suppose the universe of stocks has p elements (stocks). We might
usefully entertain the component stocks of the S&P 500 index (as of
a fixed date) as an orienting example. Pick a number of factors, m.
Given daily historical returns on the selected stock universe, a factor
analysis procedure will yield m factors defined by their respective
factor loadings. These loadings are weights applied to each of the
stocks. Thus, factor 1 has loadings l1,1, . . . , l1,500. The other m − 1
factors similarly have their own loadings.

Multiplying the loadings by the (unobserved) factors yields values
for the returns. Thus, given the loadings matrix L, the columns of
which are the loadings vectors just described, estimates of the factors,
or factor scores, can be calculated.

So, after a factor analysis one has, in addition to the original
p stock return time series, m time series of factor estimates. It may
help to think of the parallel with industry index construction; some
statistical factors may look like industry indexes, and may even be
thought of that way. But keep in mind the important structural
distinction that statistical factors are a function solely of stock price
history with no information on company fundamentals considered.

If one were to regress the stock returns on the factors one would
obtain a set of regression coefficients. For each stock, there is one
coefficient per factor. These coefficients are the stock exposures to the
factors. By construction of the factors, there is no other set of m linear
combinations of the observables that can give a better regression for
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the chosen estimation criterion (most often maximum likelihood).
There are infinitely many equivalent sets, however. Strategies with
names such as varimax rotation and principal factors—related to
principal component analysis—are used to select a unique member
from this infinite set.

Note that there is a duality between factor loadings and
stock exposures to factors. The duality, which is a consequence
of the factor definition and construction, is such that the rows of the
loadings matrix are the stock exposures to the factors. That is, in
the p × m loadings matrix L, the element li,j is both the loading of
the jth factor on the ith stock and the exposure of the ith stock to the
jth factor.

What is the interpretation of a factor model? It is this: The
universe of p stocks is supposed to be a heavily confused view of
a much smaller set of fundamental entities—factors. Crudely, one
might suppose that the stock universe is really driven by one factor
called ‘‘the market.’’ Less crudely one might suppose that, in addition
to the market, there are a dozen ‘‘industry’’ factors. The factor
analysis may then be viewed as a statistical procedure to disentangle
the structure—the factors—from the noisy image presented by the
full stock universe, and to show how the stock universe we observe
is constructed from the ‘‘real’’ factor structure.

3.6.2 Defactored Returns

Another successful model based on factor analysis reversed the usual
thinking: Take out the market and sector movements from stock
returns before building a forecast model. The rationale is this: To the
extent that market factors are unpredictable but sentiment about the
relative position of individual stocks is stable over several days, such
filtered returns should exhibit more predictable structure. Let’s look
in a little more detail at this interesting idea.

Residuals from the fitted regression model (stocks regressed on
estimated factors) will be referred to as defactored returns. It is
these defactored returns on which attention is focused. Why? The
notion is that return to a stock may be considered as being com-
posed of return to a set of underlying factors (market, industry,
or whatever other interpretation might be entertained) plus some
individual stock-specific amount. For a stock i this may be expressed
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algebraically as:

ri = rf1 , + · · · + rfm + rsi

For a market and industry neutral portfolio, it is the stock-specific
component which remains in the residual of the standard fitted model.
Moreover, the stock-specific component may be more predictable
than the others in the short term and following this construction.
For example, regardless of today’s overall market sentiment, the
relative positions (value) of a set of related stocks are likely to be the
similar to what they were yesterday. In such situations, a portfolio
constructed from forecasts of ‘‘de-marketed’’ returns is still likely to
yield a positive result.

A simplified illustration may help to convey the essence of the
notion. Suppose a market comprises just two stocks in roughly equal
proportion (capitalization, value, price). On day t the return may
be denoted:

r1,t = mt + ηt,
r2,t = mt − ηt

In this case, the factor model will include just one component and
historical data analysis will reveal the market to be essentially the
average of the two constituent stocks. (More generally, different
stocks will have different exposures to a factor—mt would appear
weighted in the equations—but with weights intimately bound up
with the factor definition as already described.) In this case, the
stock-specific return will be of the same magnitude for each stock,
but signed differently. Now, if this quantity, ηt, can be predicted
better than by random guess, then regardless of the pattern of the
market return, a portfolio long stock 1 and short stock 2 (vice versa
when η is negative) will, on average, yield a positive return.

In a more realistic situation, as long as many bets are made
and there is some forecast power in the defactored return model
(which may be a EWMA, autoregression, etc.), the trading strategy
should win. Making bets dependent on the size of forecast returns
and optimizing selected portfolios for risk should improve return/risk
performance.

Brief details of the algebra of factor analysis and the construction
of the defactored returns model are given in Section 3.10.
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Operational Construction of Defactored Returns Factor loadings/expo-
sures must be updated periodically to maintain any reasonable
expectation of forecast (and hence trading) performance. Since the
statistical factors directly reflect (supposed) structure in the stock
price histories, it is not surprising to discover that the structure
is dynamic. Estimating factor relationships from stale data will
most likely produce results with unpromising forecast performance.
The selection of the frequency of factor updating is, like similar
dynamic model elements previously remarked on, a matter for the
investigator’s art. Quarterly or half yearly revision cycles are often
used.

Defactored returns must be calculated using the most recent
past set of loading estimates and not the contemporaneous set,
ensuring that the defactored return series are always defactored
out of sample. While this is deleterious for simulation results, it is
critical for strategy implementation. It is easy to pay lip service to
this commonly acknowledged matter but also easy in a complicated
model or estimation procedure to forget it.

A dynamic model, generalization of the DLM might be consid-
ered so that model parameters are revised each day according to a
structural equation, but the extra computational complexity was not
justified in the late 1980s. Today there is no such computational
concern and dynamic factor models have appeared in the statistical
literature with applications to stock price prediction. With these
complicated models it is incredibly easy, and tempting, to allow great
flexibility, unwittingly taking a path to a model that does little more
than follow the data. More than one manager eventually fell victim
to the seduction, optimized to oblivion.

3.6.3 Prediction Model
After all the work necessary to build the time series of defactored
returns for each stock, the modeler is still faced with constructing a
forecast model for those returns. That does not imply a return to first
base since that would mean that the rationale for the defactorization
was void. Nonetheless, one is, as stated, faced with a forecast
model building task. One might consider autoregressive models,
for example. Note that cointegration models should presumably be
of little value here because common factors are supposedly removed
in the defactorization procedure.
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Many elaborations may be entertained. For instance, there may
be more stability in factor estimation on time scales with granularity
much longer than one day.

The natural alternative of building a forecast model for the factor
series and predicting those series may be entertained. However, this
would not replace the defactored return predictions: In the simple
example of the previous section, factor prediction is equivalent to
prediction of mt (or a cumulative version thereof). The defactored
component is still present.

An unanswered question that arises in this consideration of
return forecasting is: What is the relationship between k-day ahead
cumulative stock returns and k-day ahead factor estimates? From the
earlier discussion, another pertinent consideration is: If, as posited,
the market factors are more erratic than the defactored component,
then the forecasts will be less useful (in the sense that trading them
will yield more volatile results). These considerations indicate that
factor predictions are a secondary task for return exploitation (in
the context of a valid defactor model). However, factor prediction
models—defactor structured return model or not—are useful in
monitoring for market structural change and identifying the nature
and extent of such change.

3.7 STOCHASTIC RESONANCE

With a model-based understanding of spread or stock price temporal
dynamics, there is another crucial part of the process in which
analysis can demonstrate exploitation possibilities. Consider a spread
that may be characterized as a popcorn process: Occasionally the
spread departs from its (locally in time) ‘‘normal’’ value subsequently
to return to that norm over a reasonably well defined trajectory. The
normal level is not constant. When not subject to some kind of motion
inducing force such as a block trade, spreads meander around a local
average value, sometimes greater and sometimes less. This motion is
largely random—it can, at least, be satisfactorily considered random
in the present context. Knowing that once a spread has ‘‘returned’’ to
its mean it will henceforth exhibit essentially random variation about
that mean suggests that the reversion exit rule can be modified from
the basic ‘‘exit when the forecast is zero’’ to ‘‘exit a little on the other
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side of the zero forecast from which the trade was entered.’’ Here
the ‘‘little’’ is calibrated by analysis of the range of variability of the
spread in recent episodes of wandering about the mean before it took
off (up or down). Volatility forecasting models, GARCH, stochastic
volatility, or other models may be useful in this task.

The phenomenon of ‘‘noise at rest,’’ the random wandering
about the local mean just exemplified, is known as stochastic
resonance.

As you read the foregoing description, you may feel a sense of
deja vu. The description of modeling the variation about the mean
during periods of zero forecast activity is quite the same as the general
description of the variation of the spread overall. Such self-similarity
occurs throughout nature according to Benoit Mandelbrot, who
invented a branch of mathematics called fractals for the study and
analysis of such patterns. Mandelbrot, 2004, has argued that fractal
analysis provides a better model for understanding the movements
of prices of financial instruments than anything currently in the
mathematical finance literature. It is unknown whether any successful
trading strategies have been built using fractal analysis; Mandelbrot
himself does not believe his tools are yet sufficiently developed for
prediction of financial series to be feasible.

3.8 PRACTICAL MATTERS

Forecasts of stock price movements are incredibly inaccurate. Take
this message to heart, especially if you have completed a standard
introductory course on statistical regression analysis. The tradi-
tional presentation proclaims that a regression model is not very
useful (some statisticians would say useless) if the R-square is less
than 70 percent. If you have not taken such a course and do not
know what an R-square is, no matter: Read on. The traditional
presentation is not wrong. It is just not appropriate to the situa-
tion we are concerned with here. Now, observing that your weekly
return regressions produced fitted R-squares of 10 percent or less,
perk up!

The key to successfully exploiting predictions that are not very
accurate is that the direction is forecast correctly somewhat better
than 50 percent of the time (assuming that up and down forecasts
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are equally accurate).1 If a model makes correct directional forecasts
(50 + ϵ)% of the time, then the net gain is (50 + ϵ) − (50 − ϵ)% =
2ϵ% of the bets. This net gain can be realized if one can make a
sufficient number of bets. The latter caveat is crucial because averages
are reliable indicators of performance only in the aggregate.

Guaranteeing that 2ϵ% of one’s bets is the net outcome of a
strategy is not sufficient, by itself, to guarantee making a profit:
Those bets must cover transaction costs. And remember, it is not the

1The situation is actually more complicated in a manner that is advantageous to
a fund manager. Symmetry on gains and losses makes for a simple presentation
of the point that a small bias can drive a successful strategy; one can readily live
with relative odds that would cause a physician nightmares. The practical outcome
of a collection of bets is determined by the sum of the gains minus the sum of
the losses. A big win pays for many small losses. The significance of this fact is
in directing a manager to construct stop loss rules (early exit from a bet that is
not working according to forecast expectation) that curtail losses without limiting
gains. Where this is possible, a model with seemingly textbook sized relative odds in
favor of winning forecasts can be profitably traded within prescribed risk tolerances.
Technically, such rules modify the utility function of a model by altering the
characteristics of the outcome set by employing a procedure in which the forecast
model is only one of several elements.

A warning: Beware of being fooled by purveyors of tales of randomness.
A strategy that offers bets that typically generate a small loss and occasionally a
whopping gain sounds alluring when proffered as relief after a cunningly woven
web of disaster shown to seemingly inevitably follow plays where the odds are
conventionally in favor of winning. After these examples of catastrophe are depicted,
solace is offered in the guise of an alternative characterized by low risk (small losses)
with large gain potential. A crafty invocation of the straw man technique of
persuasion. Or, statisticulation, as Huff would call it.

A fine artisan of the word weaves an impressing story of unavoidable doom
employing unimpeachable calculus of probability. Then, Pow! Batman saves the
‘‘What can I do?’’ day with a tale of the occasional big win bought by easy-to-take
small losses. A complete reversal of pattern. That cannot—can it?—but dispel the
doom instantly. Opposite pattern must beget opposite emotion. Joy!

Now about those small losses. Lots of small losses. Total up those small losses
and discover the shamelessly omitted (oops, I mean inadvertently hidden in the
detail) large cumulative loss over an extended period before the Batman surprise.
So what have we truly gotten? A few periods of glee before inevitable catastrophe
supplanted with prolonged, ulcer inducing negativity, despondency, despair, and
(if you can stand the wait) possible vindication! It is still an uncertain game. Just
different rules.

There are many kinds of randomness.
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average transaction cost that must be covered by the net gain. It is the
much larger total cost of all bets divided by the small percentage of
net gain bets that must be covered. For example, if my model wins 51
percent of the time, then the net gain is 51 − 49 = 2 percent of bets.
Thus, out of 100 bets (on average) 51 will be winners and 49 will be
losers. I make net 2 winning bets for each 100 placed. Statistically
guaranteed. My fee for playing, though, is the fee for making all 100
bets, not just the net 2. Thus, my 2 percent guaranteed net winners
must cover the costs for all 100 percent of the bets.

Statistical forecast models can do much more than simply predict
direction. They can predict magnitude also. Consider a first-order
autoregressive model for weekly returns, for example: The size of the
return for next week is forecast explicitly (as a fraction of the return
for last week). If an estimated statistical model has any validity, then
those magnitudes can be used to improve trade selection: Forecasts
that are smaller than trade cost are ignored. No point in making bets
that have expected gain less than the cost of the game, is there?

Now, what about all that prediction inaccuracy we talked about?
If predictions are okay on average but lousy individually, how can we
rely on individual forecasts to weed out trades with expected return
lower than trade cost? Won’t we throw away trades that turn out to
be enormously profitable? And take trades that return less than costs?

Indeed yes. Once again, it is the frequency argument that is
pertinent here. On average, the set of trades discarded as unprofitable
after costs has expected return lower than trade cost. Also, on
average, the set of retained trades has expected return greater than
trade cost. Thus, the statistically guaranteed net gain trades have
expected return greater than trade cost.2

3.9 DOUBLING: A DEEPER PERSPECTIVE

It is tempting after an extended discussion of technical models, even
at the limited descriptive level of this chapter, to be seduced into

2Recall footnote 1, on improving the outcome of a forecast model by imposing a
bet rationing (stop loss) rule. Such a procedure increases the average gain of bets
made according to the forecast model, so one might squeeze just a little more from
an opportunity set by realizing that return bias can convert some raw losing trades
(those with average gain less than transaction cost) into winning trades. Subtle. And
nice. See also the discussion of stochastic resonance in Section 3.7.
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forgetting that models are wrong. Some are useful and that is the
context in which we use them. When applying a model, an activity
of signal urgency and import is error analysis. Where and how a
model fails informs on weaknesses that could be ameliorated and
improvements that might be discovered.

In Chapter 2 we introduced ‘‘Rule 3,’’ a bet doubling scheme
in which a spread bet was doubled if the spread became suffi-
ciently large. The idea was motivated by observing spread patterns
in the context of an already formulated model, Rule 1 or 2—this
is error analysis notwithstanding the quasi informality of rule posit-
ing based on eyeballing data rather than formal statistical model
building.

With more complicated models, eyeball analysis is infeasible.
Then one must explicitly focus upon the results of trading a model,
either in practice (with dollars at risk) or synthetically, (using simu-
lations). Beyond the standard fare of comparing forecast return with
outcome one can examine the trajectory of bet outcome from the
point of placement to the point of unwinding. In the example of
the spread doubling the typical trajectory of cumulative return on
the original bet is a J curve: Losses at first are subsequently recov-
ered then (the doubling phase) profits accrue. Trade analysis from
any model, regardless of complexity, can reveal such evolutionary
patterns and, hence, provide raw material for strategy enhancements
such as doubling.

Notice how the dynamic of the trade, not the identification
of placement and unwind conditions, reveals the opportunities in
this analysis. Dynamics, trade and other, are a recurring theme in
this text. While the end result is what makes it to the bank and
investor reports, dynamics of how the result is made are critical
for identifying problems and opportunities. They are also important
to understand from the perspective of explaining monthly return
variability to investors when trades extend over calendar month-end
boundaries.

Figure 3.9 shows the archetypal trio of trade cumulative return
trajectories: (a) gain from trade inception to unwinding; (b) loss from
inception to trade cancellation; (c) the J-curve of initial loss followed
by recovery and gain. Analysis of collections of trades in each category
can reveal possibilities for strategy improvement. Imagine what you
would do with the discovery of a distinct characterization of price
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FIGURE 3.9 Archetypal trade cumulative return trajectories

and volume history immediately preceding trade signals that divided
prospective trades into the three categories.3 Imagine.

3.10 FACTOR ANALYSIS PRIMER

The following material is based on the description of factor analysis
in The Advanced Theory of Statistics, Volume 3, Chapter 43, by Sir
Maurice Kendall, Alan Stuart, and Keith Ord (now called Kendall’s
Advanced Theory of Statistics [KS]). The notation is modified from
KS so that matrices are represented by capital letters. Thus, γ in KS
is " here. This makes usage consistent throughout.

Suppose there are p stocks, returns for which are determined
linearly from values of m < p unobservable factors:

rj =
m∑

k=1

ljkfk + µj + ϵj, j = 1, . . . , p

3This type of research has received considerable attention in seismology where
predicting earthquakes remains a research priority for several countries, recently
highlighted by the tsunami death toll of over 200,000 from the December 2004
event in the Indian Ocean.
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where the ϵs are error terms (observation error, model residual
structure). The coefficients l are called factor loadings. The variable
means µj are usually subtracted before analysis. In our case, we
assume that returns have mean zero so that µj = 0. In matrix form:

r
(p × 1) = L

(p × m)
f

(m × 1) + µ
(p × 1) + ϵ

(p × 1)

where L is the p × m matrix of coefficients {lij}. (Note that this
expression is for one set of observations; that is, the set of returns on
p stocks for a single day.) Now assume:

1. That the f ’s are independent normal variables with zero mean
and unit variance

2. That each ϵj is independent of all other ϵs and of all the f s and
has variance (or specificity) σ 2

j

It follows that:

cov(rj, rk) =
m∑

t=1

ljtlkt, j ̸= k,

var(rj) =
m∑

t=1

l2jt + σ 2
j

These relationships may be expressed succinctly in vector/matrix
form as:

# = LL′ + $

where $ is the p × p matrix diag(σ 2
1 , . . . ,σ 2

p ).
From the data, we observe empirical values of #. The objectives

are to determine the number of factors, m, and to estimate the
constants in L and $. Determination of m is highly subjective; it
is like choosing the number of components in principal component
analysis. Indeed, PCA is often used to get an initial estimate of m,
which may be refined by likelihood ratio testing and residual analysis
of the m-factor model. In what follows, assume that m is fixed.
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In some cases, interest is on the implied factor scores for particular
days in a sample. That is, given returns r,t = (r1,t, . . . , rp,t)′ on day
t, what are the implied values f,t = (f1,t, . . . , fm,t)

′ for the m factors?
If L and ! are known, generalized least squares estimation of f ,t is
obtained by minimizing:

(r,t − µ − Lf,t)
′
!−1(r,t − µ − Lf,t)

Note that the mean stock return vector, µ, is assumed to be zero.
(Recall that µj is the mean return of stock j; µ is not the mean stock
return on day t.) The solution of the minimization is:

f̂,t = J−1L′!−1r,t

where J = L′!−1L. In practice, L and ! are unknown; the MLEs are
substituted.

An alternative estimator for the factor scores is given in S.J.
Press, Applied Multivariate Analysis, Section 10.3. (Our notation is
used for consistency herein.) Essentially, he assumes away the error
covariances when the model is restated as:

f,t = Ar,t + u,t, t = 1, . . . , n

where the factor scores at time t are linear combinations of the
stock returns at that time. A subsequent appeal to a large sample
approximation results in the estimator:

f̂,t = L̂′(nRR′)−1r,t

3.10.1 Prediction Model for Defactored Returns

In the model described in Section 3.6, interest is in the defactored
returns. For day t, the set of defactored stock returns is defined as
the difference between the observed set of returns and the weighted
factor scores (where the weights are, of course, the factor loadings):

dfr,t = r,t − L̂′f̂,t

This vector of defactored returns, computed for each day in the
sample, provides the raw time series from which the prediction
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model is constructed. In an autoregressive model, for example, the
entry in the regression for day t for stock j is:

k∑

a=1

dfrj,t−a = β1dfrj,t−k + · · · + βqdfrj,t−k−q+1 + ϵj,t

This equation states that the k-day cumulative defactored return to
day t is regressed on the q daily defactored returns immediately pre-
ceding the cumulation period. Notice that the regression coefficients
are common across stocks.

The forecast of the k-day ahead cumulative defactored return at
the end of day t is constructed as:

k∑

a=1

dfrj,t+a = β̂1dfrj,t + · · · + β̂qdfrj,t−q+1

Other forecast models may be employed: ‘‘You pay your money
and take your chances.’’



CHAPTER 4
Law of Reversion

Now here, you see it takes all the running you can do, to
keep in the same place.

—Through the Looking Glass, Lewis Carroll

4.1 INTRODUCTION

I n this chapter, we begin a series of four excursions into the the-
oretical underpinnings of price movements exploited in statistical

arbitrage. The first result, presented in this chapter, is a simple prob-
ability theorem that evinces a basic law guaranteeing the presence of
reversion in prices in an efficient market. In Chapter 5 a common
confusion is cleared up regarding the potential for reversion where
price distributions are heavy tailed. In summary, reversion is possible
with any source distribution. Following that clarification, we discuss
in Chapter 6 definition and measurement of interstock volatility, the
variation which is the main course of reversion plays. Finally in this
theoretical series, we present in Chapter 7 a theoretical derivation of
how much reversion can be expected from trading a pair.

Together these four chapters demonstrate and quantify the
opportunity for statistical arbitrage in ideal (not idealized) mar-
ket conditions. The material is not necessary for understanding the
remainder of the book, but knowledge of it will amplify appreciation
of the impact of market developments that have led to the practi-
cal elimination of the discipline of statistical arbitrage in the public
domain.

67
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4.2 MODEL AND RESULT

We present a model for forecasting prices of financial instruments
that guarantees 75 percent forecasting accuracy. The chosen setting is
prediction about the daily spread range of a pair but a little reflection
will reveal a much wider applicability. Specifically, we focus on
predicting whether the spread tomorrow will be greater or smaller
than the spread today.

The model is quite simple. If the spread today is greater than the
expected average spread, then predict that the spread tomorrow will
be smaller than the spread today. On the other hand, if the spread
today was less than the expected average spread, then predict that
the spread tomorrow will be greater than the spread today.

4.2.1 The 75 Percent Rule

The model just described is formalized as a probability model as
follows. Define a sequence of identically distributed, independent
continuous random variables {Pt, t = 1, 2, . . .} with support on the
nonnegative real line and median m. Then:

Pr[(Pt > Pt−1 ∩ Pt−1 < m) ∪ (Pt < Pt−1 ∩ Pt−1 > m)] = 0.75

In the language of the motivating spread problem, the random
quantity Pt is the spread on day t (a nonnegative value), and days are
considered to be independent. The two compound events comprising
the probability statement are straightforwardly identified with the
actions specified in the informal prediction model above. But a word
is in order regarding the details of each event. It is crucial to note that
each event is a conjunction, and, and not a conditional, given that,
as might initially be considered appropriate to represent the if –then
nature of the informal model. The informal model is a prescription
of the action that will be taken; the probability in which we are
interested is the probability of how often those actions (predictions)
will be correct. Thus, looking to expected performance, we want to
know how often the spread on a given day will exceed the spread on
the previous day when at the same time the spread on that previous
day does not exceed the median value. Similarly, we want to know
how often the spread on a given day will not exceed the spread on
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the previous day when at the same time the spread on that previous
day exceeds the median.

Those distinctions may seem arcane but proper understanding
is critical to the correct evaluation of expected result of a strategy.
Suppose that on eight days out of ten the spread is precisely equal
to the median. Then the scheme makes a prediction only for 20
percent of the time. That understanding flows directly from the
conjunction/disjunction distinction. With the wrong understanding
a five-to-one ratio of expected return to actual return of a scheme
would ensue.

Operationally, one may bet on the outcome of the spread tomor-
row once today’s spread is confirmed (close of trading). On those
days for which the spread is observed to be greater than the median
spread, the bet for tomorrow is that the exhibited spread tomorrow
will be less than the spread seen today. The proportion of winning
bets in such a scheme is the conditional given that probability:

Pr[Pt+1 < Pt|Pt > m] = 3
4

Similarly, bets in the other direction will be winners three quarters
of the time. Does this mean that we win ‘‘1.5 of the time?’’ Now that
really would be a statistical arbitrage! The missing consideration is the
relative frequency with which the conditioning event occurs. Now,
Pt < m occurs half of the time by definition of the median. Therefore,
half of the time we will bet on the spread decreasing relative to today
and of those bets, three quarters will be winners. The other half of
the time we will bet on the spread increasing relative to today and
of those bets, three quarters will also be winners. Thus, over all
bets, three quarters will be winners. (In the previous illustration, the
conditioning events occur only 20 percent of the time and the result
would be 3

4 × 1
5 or just 3

20 .)
Before proceeding to the proof of the result, note that the

assumption of continuity is crucial (hence the emphasis in the model
statement). It is trivial to show that the result is not true for discrete
variables (see the final part of this section).

4.2.2 Proof of the 75 Percent Rule

The proof of the result uses a geometric argument to promote
visualization of the problem structure. An added bonus is that one
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Pt = Pt−1

Pt−1 > Pt

Pt−1 < Pt 1

2

(a)

(b)

Pt−1

Pt

median

median

FIGURE 4.1 Domain of joint distribution of Pt and Pt−1

can see that certain structural assumptions made in the theorem may
be relaxed. These relaxations are discussed following the proof of the
basic result.

Consider the joint distribution of two consecutive terms of the
sequence, Pt−1 and Pt. Assuming independence, the contours of this
joint distribution are symmetric (about the line Pt = Pt−1) regardless
of the precise form of the underlying distribution. In particular, it is
not necessary to assume that the distribution has a symmetric density
function.

Consider Figure 4.1. The domain of the joint distribution (the
positive quadrant of ℜ2 including the zero boundaries) is partitioned
in both dimensions at the median point. By the definition of the
median, the four quadrants so constructed each represent 25 percent
of the joint distribution.

The lower left and upper right quadrants are bisected radially
from the joint median by the axis of symmetry. Now, the symmetry of
the density contours—resulting from independent, identical marginal
distributions—means that both halves of each quadrant cover the
same total probability. Therefore, each half-quadrant accounts for
12.5 percent of the total joint probability.

The remainder of the proof consists of identifying on the figure
those regions corresponding to the union in the probability statement
made earlier. This is clearly and precisely the union of shaded regions
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(a) and (b), which is the domain of the joint distribution excepting
unshaded regions (1) and (2). The latter regions each account for
12.5 percent of the total joint probability as shown in the previous
paragraph. Therefore, the union of regions (a) and (b) represents
exactly three quarters of the joint probability.

It is worth noting at this point that we did not decompose the
upper left or lower right quadrants. Fortunately, it is not necessary
to do so since there is no specific result for the general case.

4.2.3 Analytic Proof of the 75 Percent Rule

The purpose of giving a geometric argument is to facilitate under-
standing of generalizations of the result that will be presented in
the next section. Before proceeding thereto, we establish the result
analytically. Write X = Pt and Y = Pt−1 to simplify notation. The
two events:

{X < Y ∩ Y > m} and {X > Y ∩ Y < m}

are disjoint (easily seen from the fact that Y > m and Y < m cannot
occur simultaneously: On the graph, regions (a) and (b) do not
overlap), so the probability of the disjunction is simply the sum of
the individual probabilities. Consider the first part of the disjunction:

Pr[X < Y ∩ Y > m] =
∫ ∞

m

∫ y

−∞
fXY(x, y)dxdy

where fXY(x, y) denotes the joint density function of X and Y. By
the assumption of independence, the joint density is just the product
of the individual marginal densities, which in this case are identical
(also by assumption). Denoting the marginal density generically by
f (.) and its corresponding distribution by F(.), proceed as follows:

∫ ∞

m

∫ y

−∞
fXY(x, y)dxdy =

∫ ∞

m

∫ y

−∞
f (x)f (y)dxdy

=
∫ ∞

m
F(y)f (y)dy

=
∫ ∞

m
F(y)dF(y)



72 STATISTICAL ARBITRAGE

The last step is simply recognition that the density function of
a random quantity is the analytic derivative of the corresponding
distribution function. The remaining steps are trivial:

∫ ∞

m
F(y)dF(y) = 1

2
F(y)2

∣∣∣∣
∞

m

= 1
2

[(
lim
t→∞

F(t)
)2

− F(m)2
]

= 1
2

[

1 −
(

1
2

)2
]

= 3
8

For the second part of the disjunction, the result follows from a
similar argument after an initial algebraic simplification. First, note
that the event Y < m may be expressed as the union of two disjoint
events:

Y < m ≡ {(X > Y) ∩ (Y < m)} ∪ {(X < Y) ∩ (Y < m)}

By definition (recall that m is the median of the distribution), the
probability of the event Y < m is one half. Therefore, using the fact
that probabilities for disjoint events are additive, we may write:

Pr[X > Y ∩ Y < m] = 1
2

− Pr[X < Y ∩ Y < m]

Now, proceeding much as for the first part:

Pr[X > Y ∩ Y < m] = 1
2

−
∫ m

−∞

∫ y

−∞
fXY(x, y)dxdy

= 1
2

−
∫ m

−∞
F(y)dF(y)

= 1
2

− 1
2

[

F(m)2 −
(

lim
t→−∞

F(t)
)2

]
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= 1
2

− 1
2

[(
1
2

)2
]

= 3
8

Adding the probabilities of the two parts yields the result.

4.2.4 Discrete Counter

Consider a random variable that takes on just two distinct values,
a and b, with probabilities p and 1 − p, respectively. Whenever
p ̸= 1

2 , the probability of the random variable exceeding the median
is also not equal to one half! Notwithstanding that minor oddity,
examine the probabilities of the two events comprising the theorem
statement:

{X < Y ∩ Y > m} and {X > Y ∩ Y < m}

In this discrete example these events are specifically:

{X = a ∩ Y = b} and {X = b ∩ Y = a}

which each have probability p(1 − p), hence, the probability in
the theorem is 2p(1 − p). The maximum value this probability can
assume is 1

2 when p = 1
2 (differentiate, equate to zero, solve).

4.2.5 Generalizations

Financial time series are notorious for the tenacity with which they
refuse to reveal underlying mathematical structure (though Mandel-
brot, 2004, may demur from that statement). Features of such data,
which often show up in statistical modeling, include: nonnormal
distributions (returns are frequently characterized by leptokurtosis);
nonconstant variance (market dynamics often produce bursts of high
and low volatility, and modelers have tried many approaches from
GARCH and its variants to Mandelbrot’s fractals, see Chapter 3);
and serial dependence. The conditions of the theorem can be relaxed
to accommodate all of these behaviors.
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The result extends to arbitrary continuous random variables
directly: The constraint of support on the nonnegative real line is not
required. In the geometric argument, no explicit scaling is required
for the density axes (the zero origin is convenient for explication).
In the analytic argument, recall that we did not restrict the region of
support of the densities.

Note that if the underlying distribution has a symmetric density
function (implying either that the support is the whole real line
or a finite interval), then the pivotal point is the expected value
(mean) of the density if it exists. The Cauchy distribution, sometimes
appropriate for modeling daily price moves, does not have a defined
expected value, but it does have a median and the stated result holds.

The 75 percent rule is extended for nonconstant variances in
Section 4.3.

The independence assumption is straightforwardly relaxed: From
the geometric argument, it is only necessary that the contours of
the joint distribution be symmetric. Therefore, the independence
condition in the theorem can be replaced by zero correlation. An
analytical treatment, with examples, is presented in Section 4.4.

Finally, generalizing the argument for the nonconstant variance
case extends the result so that the spread distribution may be different
every day, providing that certain frequency conditions are satisfied.
Details are given in Section 4.5.

4.3 INHOMOGENEOUS VARIANCES

Spreads are supposed to be generated independently each day from
a distribution in a given family of distributions. The family of
distributions is fixed but the particular member from which price is
generated on a given day is uncertain. Members of the family are
distinguished only by the variance. Properties of the realized variance
sequence now determine what can be said about the price series.

What can be said if the variances, day to day, exhibit independent
‘‘random’’ values? Then spreads will look as if drawn from, not a
member of the original family, but from an average of all the members
of the family where the averaging is over the relative frequencies of
the possible variances. In other words, the spread on day t is no
longer generated from F for a given σ but from the integrated
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distribution:

FP(p) =
∫

Fσ (p)dσ

For example, suppose that the family of variance conditional distri-
butions is the normal family (with constant mean in this context)
and that the variances occur randomly as if generated from an
inverse gamma distribution; then spreads will look as if they were
generated by the Student t distribution. The key to the result
is the random element; it guarantees (probabilistically) that the
daily transitions look as if the underlying spread model is Student
t. (This point is expanded upon in Section 4.5 where a simi-
lar argument proves the result for arbitrarily different generating
distributions day-to-day. An extended discussion of the relation-
ship of marginal distribution to a time series of values is given
in Chapter 5.)

We can therefore state that the 75 percent rule is true in the case
of inhomogeneous variance sequences.

Note that the distributions for spread (conditional on variance)
and for (unconditional) variance need not be of mathematically
convenient forms as used in the previous example. Any regular
(‘‘well behaved,’’ in terms of continuity) distributions will yield
the 75 percent result. There is no requirement for the density or
distribution function to be expressed in a closed form mathematical
expression.

4.3.1 Volatility Bursts

Autoregressive conditional heteroscedastic (ARCH) models (Engle,
1982) were introduced to capture the observed clustering of variances
in macro economic data. In the past few years ARCH and GARCH
models have been heavily used in the econometric and finance litera-
ture, the latter because of the oft remarked phenomenon of volatility
bursts. Most such bursts are of increased volatility from a regular
level, typically associated with bad news about a company. Histor-
ically, bursts of low volatility are less frequently experienced. Since
early 2003, however, volatility of stocks on the U.S. exchanges has
been declining. Spread volatility reached unprecedented lows in 2003
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and 2004; implications of that development for statistical arbitrage
are examined in Chapter 9.

When volatility exhibits bursts, variances are not generated inde-
pendently each day but exhibit serial correlation. The 75 percent rule
still holds by this argument: Within a burst, the theorem applies as if
the situation were (approximately) constant variance. Therefore, only
the transition days could alter the result. There are comparatively
few such days, so the result will stand to a very close approximation.
In fact, the result can be shown to hold exactly: The transitions
are irrelevant—see the argument in Section 4.5 for the general
nonconstant variance case. Chapter 5 presents analysis of related
patterns.

4.3.2 Numerical Illustration

Figure 4.2(a) shows the histogram of a sample of 1,000 values
generated from the normal–inverse Gamma scheme:

σ 2
t ∼ IG[a, b],

Pt ∼ N[0, σ 2
t ]

First, generate an independent drawing of σ 2
t from the inverse Gamma

distribution (with parameters a and b—the actual specification of a

(a)

−3 −2 −1 0 1
0.0

0.5

1.0

1.5

Prices from normal-inverse gamma model; T_5 superimposed

(b)
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FIGURE 4.2 Random sample from normal–inverse Gamma model
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and b does not matter: Any nonnegative values will do). Then, using
this value of σ 2

t , generate a value for Pt from the normal distribution
with mean 0 and variance σ 2

t . Superimposed on the histogram is the
density function of the Student t distribution, which is the theoretical
marginal distribution of spreads here. Figure 4.2(b) shows the sample
as a time series.

The proportion of one-day moves in the direction of the median
is 75.37 percent, satisfyingly in accord with the rule.

4.4 FIRST-ORDER SERIAL CORRELATION

The result can be extended to the case of correlated variables. The
simplest case to consider is that of distributions with symmetric den-
sity functions, since then the contours are circles (uncorrelated) or
ellipses (correlated). In the latter case, one can see that by dividing
up ℜ2 into quadrants along the major and minor axes of the con-
tours, then bisecting those quadrants radially from the joint median
point as previously, one is left with equiprobable regions once again.
(Recall that, with symmetric densities, all quadrants are probablisti-
cally bisected this way, not just those corresponding to the lower left
and upper right in the rotated coordinates.) The remaining task is
to identify the half quadrants with a correct statement (like the one
with which the original result was stated) in terms of the random
quantities. The result is easily seen by example. Suppose that Pt and
Pt−1 have covariance c. Define a new variable as a linear combina-
tion of the correlated variables, Zt = a(Pt − rPt−1). The coefficient r
is set to:

r = cov[Pt, Pt−1]
var[Pt−1]

(which is just the correlation between Pt and Pt−1) in order to make
Pt−1 and Zt uncorrelated; the scale factor a is chosen to make the
variance of Zt equal to the variance of Pt:

a = (1 − r2)−
1
2

Now the theorem applies to Pt−1 and Zt providing that Zt has the
same distribution as Pt−1, so that we have:

Pr[(Zt < Pt−1 ∩ Pt−1 > m) ∪ (Zt > Pt−1 ∩ Pt−1 < m)] = 0.75
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Substituting for Zt converts the expression into a form involving the
original variables:

Pr[(aPt − arPt−1 > Pt−1 ∩ Pt−1 > m)

∪(aPt − arPt−1 > Pt−1 ∩ Pt−1 < m)] = 0.75

Rearrangement of terms gives the required expression:

Pr[(Pt < (a−1 + r)Pt−1 ∩ Pt−1 > m)

∪(Pt > (a−1 + r)Pt−1 ∩ Pt−1 < m)] = 0.75

Clearly, the case of zero correlation, equivalently r = 0 and a = 1,
with which we began is a special case of this more general result.

The boundary, Pt = (a−1 + r)Pt−1, partitions the quadrants of
ℜ2 in proportions determined by the size of the correlation. In the
uncorrelated case, the quadrants are bisected as we saw earlier.
Figure 4.3 shows the relationship of a−1 + r =

√
1 − r2 + r with r.

The maximum,
√

2, occurs at r =
√

1
2 (easily shown analytically by

the usual procedure of differentiating, equating to zero, and solving).

r
−1.0 −0.5 0.0 0.5 1.0

−1.0
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 −

 r2 )
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FIGURE 4.3 r versus
√

(1 − r2) + r
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It is important not to lose sight of the additional constraint
introduced in the argument here. The theorem applies to correlated
variables providing that a linear combination of variables with the
stated marginal distribution retains that distributional form. This is
true of normal variables, bivariate Student t variables, and lots of
others. But it is not true in general.

At the limit when Pt and Pt−1 are perfectly correlated (r → 1, a →
∞) the result breaks down. Failure is caused by the singularity as the
original two degrees of freedom (two distinct days or observations)
collapse into a single degree of freedom (two days constrained to
have the same price so the reversion statement of the theorem is
impossible).

4.4.1 Analytic Proof

The frequency of one-day moves in the direction of the median is
given by the probability:

Pr[(Pt < Pt−1 ∩ Pt−1 > m) ∪ (Pt > Pt−1 ∩ Pt−1 < m)]

Consider the first part of the disjunction:

Pr[Pt <Pt−1 ∩Pt−1>m] =
∫ ∞

m
Pr[Pt < Pt−1 ∩ Pt−1 = p]dp

=
∫ ∞

m
Pr[Pt <Pt−1|Pt−1 = p]Pr[Pt−1 = p]dp

=
∫ ∞

m
Pr[Pt < p|Pt−1 = p] Pr[Pt−1 = p]dp

Notation is abused here to emphasize the logic. For continuous
quantities, it is not correct to write Pr[Pt−1 = p] since the probability
of the quantity taking on any specific value is zero. The correct
expression is the density function evaluated at p:

Pr[Pt < Pt−1 ∩ Pt−1 > m] =
∫ ∞

m
Pr[Pt < p|Pt−1 = p]f (p)dp

Note that the conditional cumulative probability (first term) reduces
to the unconditional value Pr[Pt < p] when Pt and Pt−1 are indepen-
dent, the case considered in Section 4.2.
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In order to simplify notation in the remaining derivation of the
result, let X denote Pt and Y denote Pt−1. Then the probability of
interest is:

Pr[X < Y ∩ Y > m] =
∫ ∞

m
Pr[X < p|Y = p]f (p)dp

Expand the conditional cumulative probability Pr[X < p|Y = p] into
the integral of the conditional density to obtain fX|Y(p) = Pr[X = x
|Y = p]:

Pr[X < Y ∩ Y > m] =
∫ ∞

m

∫ p

−∞
fX|Y(x)dxf (p)dp

=
∫ ∞

m

∫ p

−∞
fX|Y(x)f (p)dxdp

=
∫ ∞

m

∫ p

−∞
fXY(x, p)dxdp

where f XY(. . .) denotes the joint density function of X and Y.
Now, using:

∫ ∞

m

∫ ∞

−∞
fXY(x,p)dxdp = 1

2

(since the inner integral reduces to the marginal density of X and, by
definition of the median, the outer integral is then precisely one half),
and noting that:

∫ ∞

m

∫ ∞

−∞
fXY(x, p)dxdp =

∫ ∞

m

∫ p

−∞
fXY(x, p)dxdp

+
∫ ∞

m

∫ ∞

p
fXY(x, p)dxdp

it follows immediately that:

∫ ∞

m

∫ p

−∞
fXY(x, p)dxdp = 1

2
−

∫ ∞

m

∫ ∞

p
fXY(x, p)dxdp



Law of Reversion 81

This may seem like an irrelevant diversion but, in fact, it takes the
proof to within two steps of completion. At this point, we invoke the
symmetry of the joint density (which follows from the assumption of
identical marginal distributions). Formally, an expression of symme-
try is: ∫ ∞

m

∫ p

m
fXY(x, p)dxdp =

∫ ∞

m

∫ x

m
fXY(x, p)dpdx

Now, reversing the order of integration (be careful to watch the
integral limits) yields the algebraic equivalence:

∫ ∞

m

∫ x

m
fXY(x, p)dpdx =

∫ ∞

m

∫ ∞

p
fXY(x, p)dxdp

Therefore:
∫ ∞

m

∫ p

m
fXY(x, p)dxdp =

∫ ∞

m

∫ ∞

p
fXY(x, p)dxdp

Penultimately, note that the sum of the latter two integrals is one
quarter (again, by definition of the median):

∫ ∞

m

∫ p

m
fXY(x, p)dxdp +

∫ ∞

m

∫ ∞

p
fXY(x, p)dxdp

=
∫ ∞

m

∫ ∞

m
fXY(x, p)dxdp = 1

4

And so:
∫ ∞

m

∫ p

−∞
fXY(x, p)dxdp = 1

2
−

∫ ∞

m

∫ ∞

p
fXY(x, p)dxdp

= 1
2

− 1
2

(
1
4

)

= 3
8

The argument is similar for the second part of the disjunction.
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FIGURE 4.4 Random sample from autocorrelated model

4.4.2 Examples

Example 1 One thousand terms were generated from a first-order
autoregressive model with serial correlation parameter r = 0.71 (see
Figure 4.3 and the final remarks in Section 4.4 regarding this choice)
and normally distributed random terms. Figure 4.4(b) shows the time
plot; Figure 4.4(a) shows the sample marginal distribution.

The proportion of reversionary moves exhibited by the series is
62 percent.

Adding a little more realism, we compute an estimate of the
median treating the series as if it were observed day by day. Analysis
of the local median adjusted series (using window length of 10) is
illustrated in Figure 4.5. A slightly greater proportion of reversionary
moves is exhibited by the adjusted series, 65 percent.

4.5 NONCONSTANT DISTRIBUTIONS

Suppose that spreads are generated from a normal distribution for
100 days, followed by a uniform distribution for 50 days. Within
each period the basic theorem is applicable; therefore, with one
exception in 150 days the 75 percent rule is true. Suppose that on the
one hundred fifty-first day, price range is generated from the normal
distribution once again. What can we say?



Law of Reversion 83

−4 −2 0 2 4

−4
−2
0
2
4

(a)

0
100
200
300

(b)

0 200 400 600 800 1,000

FIGURE 4.5 Random sample from autocorrelated model, locally median adjusted:
(a) histogram (b) time series

Unequivocally we can say that the 75 percent rule is true on
average throughout the series. The crux of the proof is the two
transition days: (1) from normal to uniform, and (2) from uniform
to normal. Recall Figure 4.2. Region 1 is probabilistically bounded
by 0 < Pr[(1)] < 1

4 for random quantities from any two continuous,
independent distributions (by which it is meant that the probability
Pr[(1)] = Pr[(Pt, Pt−1) ∈ (1)]). This follows from the definition of the
median as stated in Section 4.2. Denote this probability by p. Now,
the complement of region 1 in the quadrant therefore has probability
1
4 − p (with the same kind of meaning attached to ‘‘probability of a
region’’ as previously). The transitions are the key because only when
the distribution changes is the basic result in question. Indeed, it is
not hard to show that the result does not hold. For each transition
where p > 1

8 (normal to uniform is a case in point) the theorem result
is not 75 percent but 100(1 − 2p)% < 75%. However, for each
such transition, the reverse transition exhibits the complementary
probability 1

4 − p for region 1.
Similar analysis applies to region 2. And this is true irrespective

of whether the probability of region 2 is the same as the probability
of region 1—which it is not if one or the other of the distributions is
asymmetric.

Thus, if transitions occur in pairs, the exhibited probability is the
average and, hence, the 75 percent result resurfaces. (If both densities
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FIGURE 4.6 Random sample from mixed normal, lognormal, and Student t
distributions

are symmetric, then the ‘‘pairs’’ condition is sufficient. However, if
at least one density is asymmetric, so that Pr[(1)] ̸= Pr[(2)], then the
pairs must occur often enough to statistically guarantee that there
are few pairs in region 1–2 compared to 1–1 or 2–2.)

One can push the argument further to prove the case for three
alternative distributions, the key caveat being that each of the three
distinct pairwise transitions occur equally often in both directions.
An appeal to mathematical induction then completes the proof for
an arbitrary number of alternative distributions.

4.6 APPLICABILITY OF THE RESULT

After several pages of theoretical development, it is a good idea to
pause and ask, ‘‘What is the relevance to model-based stock trad-
ing?’’ A major starting assumption is stationarity—a conveniently
unaddressed, unmentioned in fact, thus far. We required spreads to
be ‘‘independent, identically distributed’’ (later relaxing the condi-
tions to allow for serial correlation); implicit therein in a time series
context is stationarity.
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Now stock price series are not stationary. What about spreads?
They are typically not stationary either. However, dynamically
adjusted for local estimates of location and variance, a reasonable
approximation to stationarity can be made. There is a link here to the
idea of cointegration (see Chapter 3). It may be difficult to uncover
structure in individual price series but the difference between series
(spreads) more readily yields predictable relationships. Extending the
basic notion of cointegration to locally defined series (we might use
the nomenclature ‘‘locally cointegrated’’) identifies the link.

It is in this spirit of informed, dynamic approximation that the
theoretical result has guiding validity.

4.7 APPLICATION TO U.S. BOND FUTURES

The theorem presented in this chapter, while motivated by the dis-
cussion of spreads between stock prices of similar companies (the
classic pair of a pairs trade), is applicable with much greater gener-
ality. As long as the conditions on the ‘‘price’’ series are reasonably
met, the theorem applies to any financial instrument. Of course, the
rub is in the meeting of the conditions—many series do not (with-
out more attention to the structural development over time—trend
developments for example). Bond prices do show a good fit to the
theorem.

U.S. 30-year Treasury bond futures were studied with the sim-
ple forecasting model for changes in daily high–low price range.
The front future contract, being the most liquid, was examined.
(Because of concern about possible distortions arising from contract
expirations, the study was repeated with contract rollover at 15
business days prior to expiration of the front future. No distortions
were observed in the analysis, hence the results of the vanilla series
are reported.) Figure 4.7 shows the sample distribution of the data
for 1990–1994 used in the study—a strong skew is evident in the
distribution. A time plot of the series is given in Figure 4.8.

In the prediction model, the median value was estimated each
day using data for the preceding 20 business days. Operationally,
this local median calculation is desirable to minimize the effects of
evolutionary change. One of the benefits is a reduction in serial
correlation: The raw series (equivalent to using a constant median)



86 STATISTICAL ARBITRAGE

0 1 2 3

0

100

200

300

FIGURE 4.7 Marginal distribution of high–low range of front U.S. 30-year bond
future

TABLE 4.1 Empirical study of U.S. 30-year bonds

Proportion Proportion Proportion
Year Pt > Pt−1 | Pt−1 < m Pt < Pt−1 | Pt−1 > m Overall

1990 70% 75% 73%
1991 77% 72% 74%
1992 78% 76% 77%
1993 78% 76% 77%
1994 78% 76% 77%
All 77% 75% 76%

Note: 250 trading days per year

exhibits autocorrelations in the range [0.15, 0.2] for many lags; the
local median adjusted series exhibits no significant autocorrelations.

Results of the forecasting exercise are presented in Table 4.1:
They are quite consistent with the theorem.

The result confirmed by bond future prices is economically
exploitable. Some sophistication is required in the nature of the
implementation of the trading rule, particularly with respect to
managing trading costs, but there are many possibilities.
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FIGURE 4.8 Daily high–low range of front U.S. 30-year bond future

4.8 SUMMARY

The implication of the theorem statement is a little provocative: The
75 percent forecast accuracy is guaranteed only if the conditions of
the theorem are met. In practice, the evidence is that many stock prices
and spreads do meet the conditions approximately over short periods.
Moreover, the rate of change, when change occurs, is often sufficiently
slow that a properly calibrated, dynamic model (local characteriza-
tion of the mean in the examples examined in this chapter) exhibits
reversion results similar to the theoretical prediction.

Empirical evidence for U.S. 30-year Treasury bonds suggests that
this market, also, comes close to meeting the conditions. Certainly
the accuracy of the empirical model is not demonstrably different
from 75 percent for the five years 1990–1994. With a little ingenuity,
many situations seemingly violating the conditions of the theorem
can be made to approximate them quite closely.

Appendix 4.1: LOOKING SEVERAL DAYS AHEAD

Assuming no persistent directional movement (trending), as we have
been doing in the theoretical development and proxying by local
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FIGURE 4.9 Probability of at least 1 ‘‘winning move’’ in next n days

location adjustment in the applications, there is obviously greater
opportunity for reversion if more than one day ahead may be
considered. Of course, it is crucial that each day in the k-day period
ahead can be looked at individually; if one may only look at k-day
movements, then the situation is essentially unchanged from the
one-day case. When each day may be considered, there are multiple
(independent) chances of a win (a reversion), so the probability of a
win increases.

Figure 4.9 shows the probability of a move from the current
position in the direction of the median occurring within the next k
days for k = 1, . . . , 20. The probability of such a move occurring in
one day is 0.75 from the theorem. The other probabilities are cal-
culated from the binomial distribution as described next. The figure
also includes graphs assuming a winning probability of 0.25, 0.35,
and 0.5: In practice, a lower value than 0.75 will be observed under
the best circumstances because of theorem assumption violations.

By assumption, prices are independent each day. The theorem
states that the probability of a reversionary move from the current
position is 0.75 for any day. So, the probability of a reversionary
move from the price on day t is 0.75 for day t + 1, for day t + 2
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regardless of what happens on day t + 1 (this is the independence
assumption), and so on. Thus, the number of days in the next k
days that show reversion from today’s price is a binomial quantity
with parameters k (the number of trials) and 0.75 (the probability of
success on a given trial). The probability shown in the graph is then:

Pr[1 or more successes in k days] = 1 − Pr[0 successes in k days]

= 1 −
(

k
0

)
0.750(1 − 0.75)k−0

= 1 − 0.25k

When the independence constraint is relaxed, the binomial result is
not valid, deviation from it being a function of the temporal structure
of the series. Where that structure is simple trending, the longer ahead
one looks the less accurate the binomial probability is. Accuracy may
be restored by appropriate attention to the structural form of the
prediction function: adding an estimated trend component.





CHAPTER 5
Gauss Is Not the God of Reversion

It is better to be roughly right than precisely wrong.
—J.M. Keynes

5.1 INTRODUCTION

W e begin with two quotes:

The distribution of nominal interest rates indicates that there
is no mean reversion in interest rates and the structure does
not resemble a normal distribution.

In contrast, real interest rates appear to be normally
distributed. The distribution suggests interest rates have the
characteristic of mean reversion.

Both of these quotes, from research publications (several years
ago) of a large, successful Wall Street firm, contain fallacious logical
implications. There is no explicit definition of what is meant by
‘‘mean reversion’’ and one might, therefore, take the depictions
of reversion through marginal distributions of yields as defining it
implicitly. But that would mean that the author is not talking about
mean reversion in the general sense in which it is widely interpreted.

The first statement is wrong because time series that exhibit
marginal distributions of any shape whatsoever can be mean revert-
ing. The 75 Percent Theorem in Chapter 4 proves that unambigu-
ously. Note the caveat: can be. It is not sufficient to look at the
marginal distribution of a time series in order to be able to correctly
make a pronouncement on whether that series exhibits the quality of

91
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mean reversion. That is why the second statement is also wrong. It is
entirely possible for a time series to be as far from mean reverting as
imaginable (well, almost) while at the same time exhibiting a normal
marginal distribution, as is demonstrated in the final section of this
chapter.

Mean reversion by definition involves temporal dynamics: The
sequence in which data, samples from the marginal distribution,
occur is the critical factor.

5.2 CAMELS AND DROMEDARIES

The report mentioned at the opening of this chapter shows a his-
togram of the ten-year bond yields since 1953, presented in a section
called, ‘‘A Double Humped Distribution.’’ The claim is that a time
series exhibiting such an obviously nonnormal marginal distribution
cannot be reversionary. Despite the imagery of the title, there are,
in fact, several modes in the histogram. However, it is sufficient
to demonstrate a reversionary time series that has an extremely
pronounced bimodal distribution.

Figure 5.1 shows a combined random sample of 500 values from
the normal distribution with mean 4.5 and 500 values from the
normal distribution with mean 8.5 (and unit standard deviation for
both). These locations are motivated by the major modes of the bond
yield distribution; they are not critical to the demonstration.

Figure 5.2 shows one possible time series of these 1,000 points.
How much reversion is exhibited, from day 1, by this series? A lot.
Consider each segment separately. Take any point in either segment
far from the segment average (4.5 in the first segment, 8.5 in the
second). How many points must be passed before the time series
exhibits a value closer to the segment average? Typically only one or
two. The series never departs from the segment mean never to return;
on the contrary, the series continually crosses the average—almost a
definition of reversion. A veritable excited popcorn process!

That leaves one to consider the implications of the single change
point: the move from the first segment to the second in which the
segment mean increases. Does a single mean shift in a time series
destroy the property of mean reversion? Only if the process has to be
reverting to a global mean—that would be an unusually restrictive
interpretation of mean reversion; it would also be unhelpful and
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FIGURE 5.1 Marginal distribution: mixture distribution of half N[4.5,1] and half
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FIGURE 5.2 Time series realization of the sample depicted in Figure 5.1
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misleading in a time series context, and misleading, too, in assessing
trading opportunities that necessarily occur in a time series, sequential
manner. Suppose that the raw data are daily values. Then for two
years, the first segment of the combined series, the data would
unarguably be described as mean reverting. Shortly after the mean
increase the same conclusion would be acknowledged, albeit the
mean to which the series reverts is increased. Two more years of
splendid reversion to the (new) mean then follow. How could anyone
then look at the marginal distribution of the daily data, having
traded wonderfully profitably the most basic mean reverting strategy
describable, and announce that the series was not mean reverting?

A second distributional concern raised is that the bond data
distribution has a pronounced right-hand tail. This feature is actually
irrelevant insofar as the property of mean reversion is concerned.
Figure 5.3 shows a histogram of 1,200 points: the 1,000 from
the normal mixture of the previous example with 200 uniformly
randomly distributed over the interval [10,14]. Figure 5.4 shows one
possible time series of the 1,200 points: How much reversion is there
in this series? A lot, once again. The first two segments are mean
reverting as demonstrated in the previous paragraphs. What about
the final segment? The points are a random sample from a uniform
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FIGURE 5.3 Marginal distribution with heavy right tail
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FIGURE 5.4 Time series realization of the sample depicted in Figure 5.3
ordered by underlying sampling distribution

distribution, not a normal distribution, and therefore according to
the report, the time series cannot be mean reverting. From the graph,
would you agree? If you do, I would like to entertain some gambles
with you!

One might reasonably charge that these examples are artificial.
Real time series don’t exhibit such convenient segmentation. This
is undeniable. But it is also not an issue. Figure 5.5 shows another
possible realization of the random sample in Figure 5.3. It was
obtained by randomly selecting, without replacement, the values in
the original sample of 1,200 and plotting in order of selection. How
much reversion is exhibited? Lots. Don’t you agree just from an
eyeball analysis?

Whether the marginal distribution of a time series is a dromedary
or a camel really doesn’t matter as far as mean reversion is concerned.
To repeat: Temporal structure is the critical feature.

5.2.1 Dry River Flow

Camels are distinguished largely by their remarkable adaptation to
life in arid regions, the twin key abilities bestowed by evolution
being the sponge-like capacity of the body to absorb water and the
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FIGURE 5.5 Time series realization of the sample depicted in Figure 5.3
randomly reordered

drip-feed use thereof. Dry rivers, those with notable periods of no
stream flow, are common in arid landscapes (and often the source of
replenishment for camels). Looking at a time series of stream flow
for a dry river, one would find it difficult to deny the claim that such
a series is reversionary. The series always returns to zero no matter
how far it departs therefrom in the rainy season.

What is the typical marginal distribution of dry river flow?
Obviously it is very asymmetric. So, entirely without recourse to
mathematical formalism or rigor, we have a proof that a reversion-
ary time series need not be characterized by a symmetric marginal
distribution such as the normal.

The Bell Still Tolls Often a so-called Gamma distribution is a good
approximation (allowing for reasonable fudge for the zeroes) to dry
river flow. Now, a squared Gaussian variable is distributed as a
Chi-squared variable, which is also a Gamma variable. More than
curious coincidence?

But Not for Reversion The dry river flow example is just one particular
case of self-evident reversion. To repeat: any marginal distribution
can be exhibited by a reversionary time series.
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FIGURE 5.6 Random sample of 1,000 points from N[2.65, 2.442]
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FIGURE 5.7 Time series realization of the sample depicted in Figure 5.6
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5.3 SOME BELLS CLANG

A time series exhibiting a normal marginal distribution is not predis-
posed to exhibit mean reversion. Extraordinary diversion is equally
possible. Figure 5.6 shows a random sample from the normal dis-
tribution with mean 2.65 and standard deviation 2.44—the sample
values of the real yield data in the cited analysis. Figure 5.7 shows
one possible realization of this sample as a time series in which the
sample points are taken in order of magnitude. How much reversion
is exhibited, from day 1, by this series? Not one bit. As with my
earlier example, the charge of ‘‘unrealistic’’ or ‘‘points don’t occur
in [size] order’’ can be readily made. But such charges are irrelevant:
The point demonstrated, no matter how stylized the illustration, is
that a normal marginal distribution for a sample from a time series
reveals nothing about the temporal properties of that series, reversion
or any other.

The paper from which the quotes at the beginning of this chapter
are taken, and the content of which is critically examined here, is not
included in the references list.



CHAPTER 6
Interstock Volatility

. . .the investor does (or should) consider expected return a
desirable thing and variance of return an undesirable thing.

—Harry Markowitz, Journal of Finance,
Vol. 7, No. 1, 1952

6.1 INTRODUCTION

T he reversion exploited in pairs trading is the reversion of stock
prices to each other following a movement apart, or a movement

apart following an unusual narrowing—the popcorn process of
Chapter 2. The amount of movement in stock prices is measured
by and expressed as stock volatility, which is the standard deviation
of price changes (returns). The volatility that is relevant to the
spread reversion scheme is the volatility of relative price movements
between stocks, hence interstock volatility. Figure 6.1(a) shows the
daily closing price (adjusted for splits and dividends) of two related
stocks, ENL and RUK, for the first six months of 1999. The price
series track each other very closely, further demonstrated by the price
difference (spread) series shown in Figure 6.1(b). Ignoring the scales,
the spread series looks like any stock price series, and it will not be
surprising to discover that the volatility of the spread is similar in
character to stock price volatility.

Stock price volatility is the standard deviation of returns. But
what is the relevant measure of spread volatility? In Chapter 2 we
calibrated trade rules by directly computing the standard deviation
of the spread itself. Here we are interested in the technical definition
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of volatility, not simply a scale factor, and this requires focusing
on an appropriate return series. Considering the price difference in
Figure 6.1(b), with the trace variously above and below zero, it
is obvious that one should not treat the spread as a price—infinite
‘‘returns’’ are readily exhibited by such a series! The relevant measure
is apparent from consideration of how a basic reversion strategy
exploits spreads: When the spread widens or narrows beyond some
threshold whereupon reversion is subsequently expected, make two
bets, one on each stock, one a buy and the other a sell. Thus, the
spread bet return is the sum of the return on the stock bought and
the negative return on the stock sold:

spread return = return on buy − return on sell

(assuming equal dollar bets and measuring return to the long only).
Therefore, the value of interest, a measure of the range of variation
in the value of a spread bet or spread volatility, is directly computed
from the spread return series, itself the numeric difference of the buy
and sell return. (At this point of detail, one can begin to see how
the considerations generalize beyond the pair setting to more general
statistical arbitrages.)

Figure 6.1(c) shows the volatility traces, using a trailing 20-day
window, of the two stocks ENL and RUK and of the spread
ENL–RUK. (In all of the examples in this chapter, volatilities are
computed under the conventional assumption of locally zero-mean
return.) The spread volatility is, as foreshadowed, visually similar to
the stock volatilities. Curiously, it is consistently greater than both
the individual stock volatilities—more about that later.

Another example is shown in Figure 6.2, this time for the pair
General Motors (GM) and Ford (F). Notice that the volatility of the
spread is sometimes greater and sometimes less than the volatility of
both stocks, and sometimes greater than one but less than the other.

These two examples expose many of the features of spread
volatility that are important in understanding and exploiting spread
relationships both for the simplest pairs, as illustrated, and more
general cases including baskets of stocks. Figure 6.3 shows another
example, this time of two unrelated stocks, Microsoft (MSFT) and
EXXON (XON).
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6.2 THEORETICAL EXPLANATION

Relative price movement is functionally dependent on the price
movements of individual stocks: What could be simpler than price of
A − price of B? When looking at the variability of relative prices, the
relationship is more complicated. The key relationship is that for the
spread return already given:

spread return = return on buy − return on sell

Writing A for the return on buy, B for the return on sell, and S for
the spread return, the spread volatility is expressed as:

√
V[S] =

√
V[A − B]

=
√

V[A] + V[B] − 2V[A, B]

where V[·] denotes (statistical or probabilistic) variance, and V[·, ·]
similarly denotes covariance. This expression immediately reveals
how and why the spread volatility can be less than, greater than, or
equal to the volatility of either constituent stock. The pertinent factor
is the covariance of (the returns of) those two stocks, V[A, B].

If the two stocks A and B (abusing notation quite deliberately)
are in fact the same stock, then the variances (the square of the
volatility) are the same and, crucially, the covariance is also equal
to the variance. Hence the volatility of the spread is zero: What else
could it be since the spread itself is identically zero?

Now, what if the two stocks are unrelated? Statistically, this is
equivalent to saying that the covariance is zero. Then the spread
volatility reduces to:

√
V[S] =

√
V[A] + V[B]

That is, spread volatility is larger than both of the individual stock
volatilities. If the individual stocks have similar volatility, V[A] ≈
V[B], then the inflation factor is about 40 percent:

√
V[S] =

√
V[A] + V[B]

≈
√

2V[A]

= 1.414
√

V[A]
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6.2.1 Theory versus Practice

The illustration in Figure 6.1 shows the spread volatility for two
related stocks to be larger than both the individual stock volatilities.
The theory advanced in the previous section says (1) spread volatility
is zero for identical stocks, and (2) spread volatility is larger than
both individual stocks for unrelated stocks. Ugh? Surely ‘‘related
stocks’’ (such as ENL and RUK) are more like ‘‘identical stocks’’
than ‘‘unrelated stocks.’’ So according to the theory, shouldn’t the
volatility of the ENL–RUK spread be small?

Now we must distinguish between statistical definitions of terms
and English interpretations of the same terms. The two Elsevier
stocks, ENL and RUK, are indeed related—essentially they are
the same company. The historical traces of the price series show
extraordinarily similar behavior as befits that. Over the long term,
one is justified in stating that the prices are the same. However,
the price traces on the daily time scale seldom move precisely in
parallel; therefore the spread between the two does vary—seen in
Figure 6.1(b)—and spread volatility is not zero. In fact, over the
short term, the two price series show a negative relationship: In
Figure 6.1(a) the two price traces proceed sinuously like two snakes
entwined in a cartoon embrace, the one moving up when the other
moves down and vice versa. Statistically, this means that the two
series are negatively correlated, particularly on the short-term return
scale which is pertinent to local volatility calculations.

Aha! Negative correlation (hence, negative covariance). Put that
in the formula for spread volatility and immediately it is clear why the
Elsevier stocks’ spread volatility is greater than both the individual
stock volatilities. Profit in the bank for pairs trading!

6.2.2 Finish the Theory

Return to the expression for spread volatility:
√

V[S] =
√

V[A] + V[B] − 2V[A,B]

Write σ 2 = min(V[A], V[B]) and σ 2 = max(V[A], V[B]), then it is
trivial to sandwich the spread volatility between multiples of the
individual stock volatilities for uncorrelated stocks (V[A, B] = 0):

√
2σ ≤

√
V[S] ≤

√
2σ
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Two immediate observations have already been noted: For two
similarly volatile stocks, the spread will exhibit 40 percent more
volatility than the individual stocks; for two perfectly positively
correlated stocks, the spread will exhibit no volatility because it is
constant. That leaves one extreme case of relatedness: where A and B
are perfectly negatively correlated, A = −B. Here the spread volatility
is double the individual stock volatility:

V[S] = V[A] + V[B] − 2V[A, B]

= V[A] + V[−A] − 2V[A, −A]

= V[A] + V[A] + 2V[A, A]

= 4V[A]

Hence,
√

V[S] = 2
√

V[A]. For statistical arbitrage this is (almost) the
grail of spread relationships.

6.2.3 Finish the Examples

What can be inferred about the GM–F and MSFT–XON examples
with the benefit of the theory for the volatility of spreads? Given a
description of the stock and spread volatility traces, one can point
to periods of changing local correlation, positive to negative. Of
course, one can observe correlation by direct calculation: See Figure
6.4. Average correlation in this first six months of 1999 is 0.58;
maximum 20-day correlation is 0.86; minimum 20-day correlation
is −0.15. Important to note here, for spread exploitation, are the
dynamic changes in correlations and, hence, spread volatility and the
range of variation.

From late April the GM–F spread volatility was less than both
individual stock volatilities, as it was for most of March. In fact, from
the spread trace in Figure 6.2(b) it is clear that for most of April and
May, and again in June, the spread was practically constant in com-
parison to its value outside those periods. The spread volatility trace
in Figure 6.2(c) shows a 50 percent hike in April and a similar drop
in May. Clearly these are artifacts of the unusually large (negative)
single day spread return on April 7 (see Figure 6.5) and the 20-day
window used to compute an estimate of volatility—review the local
correlation in Figure 6.4. Outlier down-weighting and smoothing are
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typical procedures used to reduce unrealistic jumps in such indirectly
measured quantities as volatility (see Chapter 3). Figure 6.5 shows
the spread return: return on GM minus return on F.

6.2.4 Primer on Measuring Spread Volatility

Let’s begin by asking the question: Does statistical arbitrage generate
higher returns when volatility is high or when it is low?

Absent any stock-specific events, higher interstock (spread) volati-
lity should generate greater returns from a well calibrated model.
Figure 6.6 shows the average local volatility (20-day moving win-
dow) for pairwise spreads for stocks in the S&P 500 index from
1995 through 2003. Two years of outstanding returns for statistical
arbitrage were 2000 and 2001. Both were years of record high spread
volatility; 2000 higher in spread volatility and statistical arbitrage
return than 2001—nicely supporting the ceteris paribus answer.
But 1999 was the worst year for statistical arbitrage return in a
decade while spread volatility was equally high. There were many
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FIGURE 6.6 Average local standard deviation of spreads
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stock-specific events, principally earnings related, with uniformly
negative impact on return in 1999. So noticeable, widespread, and
troubling were these events that the SEC eventually passed Regulation
Fair Disclosure (Reg. FD) to outlaw the activities.

Using a local estimate of volatility, what picture is obtained
from representative spread series? What can we infer from the spread
volatility chart in Figure 6.6 using the sample local volatility reference
patterns?

Figure 6.7 illustrates local volatility (using an equally weighted,
20-point window) for two sample spread series. The top panel, (a),
shows the spread series, the center panel, (b), the local volatility
estimates. There is nothing surprising here, the calculation being a
measure of variation about a constant line segment of the curves in
the top frame. Noteworthy is the observation that the average level
of local volatility is similar for the two series.

What happens when a different measure of ‘‘local’’ is used? The
bottom panel, Figure 6.7(c), illustrates the situation for a 60-point
window: The striking feature now is the higher level of volatility indi-
cated for the greater amplitude spread. (While we continue to couch
the presentation in terms of a spread, the discussion applies equally to
any time series.) Once again, there is no surprise here. The 60-point
window captures almost a complete cycle of the greater amplitude
series—the estimated volatility would be constant if precisely a full
cycle was captured—and, hence, the local volatility estimate reflects
the amplitude of the series. In the previous case, the shorter window
was reflecting only part of the slower moving series variation. Which
estimate of volatility reflects reversion return opportunity? Here the
answer is easy.

Now consider what picture would emerge if an average over a
set of such series were examined, each such series mixed with its own
‘‘noise’’ on both amplitude and frequency.

Properly cautioned, what can be inferred from Figure 6.6? Before
attempting an answer, the archetypal example analyses clearly advise
looking at local volatility estimates from a range of windows (or
local weighting schemes)—it does seem advisable to concentrate on
evidence from shorter intervals and focus on average levels of local
volatility; mundane variation in the estimate may be little more than
artifact. May be.
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FIGURE 6.7 (a) Archetypal spread series; (b) local volatility estimate (20-point
window, equal weights) of spread series; (c) local volatility estimate (60-point
window) of spread series

Figure 6.8 reproduces the two example spread curves from Figure
6.7 and adds a third. The new series exhibits the same amplitude
as the original high-amplitude series and the same frequency as the
original higher frequency series. It therefore has the advantage of
more frequent and higher value reversion opportunities. The center
panel, (b), depicting local volatility estimates, indicates that the
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FIGURE 6.8 (a) Archetypal spread series; (b) local volatility estimate (20-point
window, equal weights) of spread series; (c) local volatility estimate (60-point
window) of spread series

average volatility of this third series is twice that of the original two,
just as expected.

Now look at bottom panel, (c), which shows local volatility
estimates from the longer window. Interesting? Once again, the
analysis points to using a shorter, more local view when inferring
reversion opportunity from average levels of spread volatility.
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With these archetypal models, one can undertake an appropri-
ate time-frequency analysis to precisely quantify the magnitude of
reversionary moves. Real spread series are less obliging, beset with
nonstationarity and ‘‘contaminating’’ noise.

The foregoing remarks are generally descriptive, characterizing
how series variation is reflected in empirical summary statistics and
indicating how the magnitude of potential gain from simple reversion
plays may be estimated. Actual reversion exploitation strategies must
be analyzed directly to make sensible inferences on expectations
therefrom, whether in the idealized settings of noise-free sinusoidal
series used here or in application to real spread histories.

Chapter 9 revisits interstock volatility in the context of the decline
in statistical arbitrage performance since 2002.



CHAPTER 7
Quantifying Reversion

Opportunities

Fortitudine vincimus—By endurance we conquer.
—Family motto of Sir E. H. Shackleton, polar explorer

7.1 INTRODUCTION

I n this chapter, we extend the theoretical developments of the
previous three chapters in the search for a deeper understanding of

the properties of reversion in time series. There are more abstractions
and more difficult mathematics here than elsewhere in the book, but
in all cases, the theoretical development is subsequently grounded
in application. Most of the discussion is framed in the language of
price series, however, the developments generally apply to any time
series. In particular, the analysis can readily be applied, sometimes
with necessary revision of inference, to transformations of price series
including returns, spreads, spread returns, factors, and so forth.

The question ‘‘What is reversion?’’ is addressed in the context of
assumed probability models for stock price generation. The models
are highly stylized and oversimplified, being entertained purely as
a device for considering notions of reversion. There is no conceit
that the models serve even as first pass approximations to the
true, unknown, price generation mechanism. By determining the
implications of definitions of reversion under the very restrictive
assumptions of these simple models, it is hoped that a coherent
view of what reversion is will emerge. The goal is to extract from
such a view meaningful and quantifiable notions of reversion that
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may be used in the study of realistic price generation models. It
is hoped that such understanding will provide new insight into
statistical arbitrage, helping us to analyze and understand how and
why statistical arbitrage works at a systems or mechanistic level, and
from that build a valid market rationale for the driving forces of the
exploitable opportunities. That may be a little ambitious; perhaps
it is reaching to hope for more than indications of what kinds of
processes to think about for such a rationale. The mechanics and the
rationale are both critical to investigating and solving the problems
that beset statistical arbitrage starting in 2004 and which continue to
affect performance today: How do market structural changes impact
strategy performance?

7.2 REVERSION IN A STATIONARY RANDOM PROCESS

We begin the study with consideration of the simplest stochastic sys-
tem, a stationary random process. Prices are supposed to be generated
independently each day from the same probability distribution, that
distribution being characterized by unchanging parameters. We shall
assume a continuous distribution. Price on day t will be denoted by
Pt, lowercase being reserved for particular values (such as a realized
price).

Some considerations that immediately suggest themselves are:

1. If Pt lies in the tail of the distribution, then it is likely that Pt+1
will be closer to the center of the distribution than is Pt. In more
formal terms: Suppose that Pt > ninety-fifth percentile of the
distribution. Then the odds that Pt+1 will be smaller than Pt are
95 : 5 (19 : 1). A similar statement is obtained for the lower tail,
of course.

The 19 : 1 odds do not express quite the same idea as is
expressed in the first sentence. Being ‘‘closer to the center than’’
is not the same as being ‘‘smaller than.’’ Certainly the odds ratio
quoted, and by implication the underlying scenario, are very
interesting. For completeness, it is useful to examine the ‘‘closer
to the center’’ scenario. The obvious notion of closer to the center
is formally: the magnitude of the deviation from the center on
the price scale. An alternative notion is to consider distance from
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the center in terms of percentiles of the underlying distribution
of prices. The two notions are equivalent for distributions with
symmetric density functions, but not otherwise.

2. If Pt is close to the center of the distribution, then it is likely that
Pt+1 will be further from the center than Pt.

After a little reflection, (ii) seems to offer infertile ground for a
reversion study; but in a sequential context, values close to the center
are useful flags for subsequent departure from the center and, hence,
of future reversionary opportunities. Recall the popcorn process of
Chapter 2 and the discussion of stochastic resonance in Chapter 3.

A generalization of the notion in (i) offers a potential starting
point for the study: If Pt > pth percentile of the distribution, then the
odds that Pt+1 < Pt are p : 100 − p. Interest here is confined to those
cases where the odds are better than even. Investors largely prefer
strategies that exhibit more winning bets than losing bets, considering
such relative frequency of outcomes a reflection of a stable process.
The thought process is deficient because by itself the win–lose ratio
imparts no information at all on the stability properties of a strat-
egy other than the raw win–lose ratio itself. Essential information
necessary for that judgment includes the description of the magni-
tudes of gains from winners and losses from losers. A strategy that
loses 80 percent of the time but that never exhibits individual losses
exceeding 0.1 percent and whose winners always gain 1 percent is
a stable and profitable system. Judgments about easily labeled but
complicated notions such as ‘‘stability’’ need careful specification
of personal preferences. Often these are not made explicit and are
therefore readily miscommunicated because individuals’ preferences
are quite variable.

For Pt > median, the odds that Pt+1 < Pt are greater than
one; similarly, for Pt < median, the odds that Pt+1 > Pt are also
greater than one. The assumption of continuity is critical here, and
a reasonable approximation for price series notwithstanding the
discrete reality thereof. You may want to revisit Chapter 4 for a
rehearsal of the difficulties discrete distributions can pose.

Two questions are immediately apparent:

1. Is the odds result exploitable in trading?
■ With artificial data following the assumed stationary process.
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■ With stock data using locally defined moments (to approximate
conditional stationarity).

2. How should reversion be defined in this context?
■ Reversion to the center requires modification of the foregoing

odds to something like 75 percent → 50 percent and 25 percent
→ 50 percent.

■ Reversion in the direction of the center—so that overshoot is
allowed and the odds exhibited are pertinent.

Whichever of (1) or (2) is appropriate (which in the context
of this chapter must be interpreted as ‘‘useful for the analysis and
interpretation of reversion in price series’’), how should reversion
be characterized? As the proportion of cases exhibiting the required
directional movement (a distribution free quantity)? As the expected
(average) price movement in the qualifying reversionary cases (which
requires integration over an assumed price distribution and is not
distribution-free)?

Both aspects are important for a trading system. In a conven-
tional trading strategy, betting on direction and magnitude of price
movements, total profits are controlled by the expected amount of
reversion. If the model is reasonable, the greater the expected price
movement, the greater the expected profit. The volatility of profits
in such a system is determined in part by the proportion of winning
to losing moves. For the same unconditional price distributions, the
higher the ratio of winners to losers, the lower the profit variance thus
spreading profit over more winning bets and fewer losing bets. Stop
loss rules and bet sizing significantly impact outcome characteristics
of a strategy, making more general absolute statements unwise.

It is worth noting the following observation. Suppose we pick
only those trades that are profitable round trip. Daily profit variation
will still, typically, be substantial. Experiments with real data using
a popcorn process model show that the proportion of winning days
can be as low as 52 percent for a strategy with 75 percent winning
bets and a Sharpe ratio over 2.

Reversion defined as any movement from today’s price in the
direction of the center of the price distribution includes overshoot
cases. The scenario characterizes as reversionary movement a price
greater than the median that moves to any lower price—including to
any price lower than the median, the so-called overshoot. Similarly,
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movement from a price below the median that moves to any higher
price is reversionary.

7.2.1 Frequency of Reversionary Moves

For any price greater than the median price, Pt = pt > m:

Pr[Pt+1 < pt] = FP(pt)

where FP(·) denotes the distribution function of the probability
distribution from which prices are assumed to be generated. (This
result is a direct consequence of the independence assumption.)
An overall measure of the occurrence of reversion in this situation
is then: ∫ ∞

m
FP(pt)fP(pt)dpt = 3

8

where fp(.) is the density function of the price distribution. Therefore,
also considering prices less than the median, Pt < m, we might say
that reversion occurs 75 percent of the time. This is the result proved
and discussed at length in Chapter 4.

Previously it was noted that the proportion of reversionary moves
is a useful characterization of a price series. The 75 percent result
states that underlying distributional form makes no difference to the
proportion of reversionary moves. Therefore, low volatility stocks
will exhibit the same proportion of opportunities for a system exploit-
ing reversion as high volatility stocks. Furthermore, stocks that are
more prone to comparatively large moves (outliers, in statistical
parlance) will also exhibit the same proportion of reversionary oppor-
tunities as stocks that are not so prone. The practical significance
of this result is that the proportion of reversionary moves is not
a function of the distribution of the underlying randomness. Thus,
when structure is added to the model for price generation, there are
no complications arising from particular distribution assumptions.
Moreover, when analyzing real price series, observed differences in
the proportion of reversionary moves unambiguously indicate differ-
ences in temporal structure other than in the random component.
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7.2.2 Amount of Reversion

Following the preceding discussion of how often reversion is exhib-
ited, some possible measures of the size of expected reversion from a
price greater than the median are:

1. E[Pt − Pt+1|Pt > Pt+1] Expected amount of reversion, given that
reversion occurs.

2. E[Pt − Pt+1|Pt > m] Average amount of reversion.
3. E[Pt − Pt+1|Pt > Pt+1]Pr[Pt+1 < Pt] Overall expected amount of

reversion.

Remarks: Pt > m is an underlying condition. The difference between
cases 1 and 2 is that case 2 includes the 25 percent of cases where
Pt > m but reversion does not occur, Pt+1 > Pt, while case 1 does
not. Case 1 includes only reversionary moves.

If case 1 is taken to define the total amount of ‘‘pure’’ reversion
in the system, then case 2 may be considered as the ‘‘revealed’’
reversion in the system. With this terminology, it is possible to
envisage a system in which the revealed reversion is zero or negative
while the pure reversion is always positive (except in uninteresting,
degenerate cases).

Moves from a price less than the median are characterized
analogously.

Pure Reversion Expected pure reversion is defined as:

E[Pt − Pt+1|Pt+1 < Pt, Pt > m] × 1
2

+ E[Pt+1 − Pt|Pt+1 > Pt, Pt < m] × 1
2

The two pieces correspond to (a) downward moves from a price above
the median and (b) upward moves from a price below the median. It is
important to keep the two parts separate because the expected values
of each are generally different; only for symmetric distributions are
they equal. Consider the first term only. From Figure 7.1, the cases of
interest define the conditional distribution represented by the shaded
region. For any particular price Pt = pt > m, the expected amount
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FIGURE 7.1 Generic price distribution

of reversion is just Pt minus the expected value of the conditional
distribution:

pt − EPt+1|Pt+1<pt [Pt+1] = pt −
∫ pt

−∞
pt+1fPt+1|Pt+1<pt (pt+1)dpt+1

The density of the conditional distribution of Pt+1, given that Pt+1 <
Pt, is just the rescaled unconditional density (from the independence
assumption), the scale factor being one minus the probability of the
subset of the original domain excluded by the conditioning. Expected
reversion is therefore:

pt − 1
FP(pt)

∫ pt

−∞
pfP(p)dp

Now we are interested in the expected value of this quantity
averaged over all those possible values Pt = pt > m:

EPt>m
[
Pt − EPt+1|Pt+1<Pt[Pt+1]

]

=
∫ ∞

m

(
pt − 1

FP(pt)

∫ pt

−∞
pfP(p)dp

)
fPt|Pt>m(pt)dpt
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Substituting for fPt|Pt>m(pt) = fP(pt)/(1 − FP(m)) = 2fP(pt) for Pt >

m, then the overall expected amount of pure (one-day) reversion
when Pt > m is:

E[Pt − Pt+1|Pt+1 < Pt, Pt > m]

= 2
∫ ∞

m

(
pt − 1

FP(pt)

∫ pt

−∞
pfP(p)dp

)
fP(pt)dpt

A similar analysis for the second term in the original expectation
yields:

E[Pt+1 − Pt|Pt+1 > Pt, Pt < m]

= 2
∫ m

−∞

(
1

1 − FP(pt)

∫ ∞

pt

pfP(p)dp − pt

)
fP(pt)dpt

Adding (one half times) these two results gives the expected pure
reversion as:

∫ ∞

m

(
pt − 1

FP(pt)

∫ pt

−∞
pfP(p)dp

)
fP(pt)dpt

+
∫ m

−∞

(
1

1 − FP(pt)

∫ ∞

pt

pfP(p)dp − pt

)
fP(pt)dpt

Some simplification of this expression would be nice. Example 1,
which follows, shows simplification possible for the normal distribu-
tion, the double integral here reducing to a single integral; however,
even there, a closed form solution remains elusive. The symmetry is
suggestive. Would the result simplify if the cut-off is taken as the
mean rather than the median? Certainly an assumption of a symmet-
ric density leads to cancellation of the two direct terms in Pt; in fact,
the two parts of the sum are equal. Perhaps Fubini’s rule, revers-
ing the order of integration, can usefully be applied? We do know
that the result is positive! A closed-form theoretical result remains
unknown at this time, but computation of any specific example is
straightforward (see the examples that follow).
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Revealed Reversion Expected revealed reversion is defined as:

E[Pt − Pt+1|Pt > m] × 1
2

+ E[Pt+1 − Pt|Pt < m] × 1
2

Consider the first term of the expression:

E[Pt − Pt+1|Pt > m] = E[Pt|Pt > m] − E[Pt+1|Pt > m]

= E[Pt|Pt > m] − E[Pt+1] by independence

= E[Pt|Pt > m] − µ

where µ denotes the mean of the price distribution. Similarly, the
second term of the expression reduces to E[Pt+1 − Pt|Pt < m] =
µ − E[Pt|Pt > m]. It is worth noting that both terms have the same
value, which follows from:

µ = E[Pt] =
∫ ∞

−∞
pfP(p)dp

=
∫ m

−∞
pfP(p)dp +

∫ ∞

m
pfP(p)dp

= 1
2

E[Pt|Pt < m] + 1
2

E[Pt|Pt > m]

whereupon:

E[Pt|Pt > m] − µ = E[Pt|Pt > m] − 1
2

E[Pt|Pt < m] − 1
2

E[Pt|Pt > m]

= 1
2

E[Pt|Pt > m] − 1
2

E[Pt|Pt < m]

= 1
2

E[Pt|Pt > m] + 1
2

E[Pt|Pt < m] − E[Pt|Pt < m]

= µ − E[Pt|Pt < m]

Total expected revealed reversion may therefore be expressed equiv-
alently as:

total expected revealed reversion = 0.5×(E[Pt|Pt> m] − E[Pt|Pt < m])

= E[Pt|Pt > m] − µ

= µ − E[Pt|Pt < m]
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which (for continuous distributions) is positive except in uninterest-
ing, degenerate cases.

Note 1: This result provides a lower bound for case 1 since the
latter excludes those outcomes, included here, for which the actual
reversion is negative, namely {Pt+1 : Pt+1 > Pt, Pt > m} and {Pt+1 :
Pt+1 < Pt, Pt < m}.

Note 2: A desirable property for the reversion measure to have is
invariance to location shift. The amount of reversion, in price units,
should not change if every price is increased by $1. It is easy to
see that the expression for expected revealed reversion is location
invariant: Moving the distribution along the scale changes the mean
and median in the same amount. For the pure reversion result, it
is not very easy to see the invariance from the equation. However,
consideration of Figure 7.1 fills that gap.

Some Specific Examples
Example 1 Prices are normally distributed. If X is normally dis-
tributed with mean µ and variance σ 2, then the conditional distri-
bution of X such that X < µ is the half normal distribution. Total
expected revealed reversion is 0.8σ . (The mean of the truncated nor-
mal distribution is given in Johnson and Kotz, Volume 1, p. 81; for
the half normal distribution the result is E[X⟩] = 2σ/

√
2π .) Thus,

the greater the dispersion of the underlying price distribution, the
greater the expected revealed reversion: a result that is nicely in tune
with intuition and desire.

From a random sample of size, 1,000 from the standard normal
distribution, the sample value is 0.8, which is beguilingly close to the
theoretical value. Figure 7.2 shows the sample distribution.

The pure reversion general result can be reduced somewhat for
the normal distribution. First, as already remarked, the terms in Pt
cancel because the density is symmetric, leaving:

−
∫ ∞

m

(
1

F(pt)

∫ pt

−∞
pf (p)dp

)
f (pt)dpt

+
∫ m

−∞

(
1

1 − F(pt)

∫ ∞

pt

pf (p)dp
)

f (pt)dpt

(The subscript on f and F has been dropped since it is not necessary
to distinguish different conditional and unconditional distributions
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FIGURE 7.2 Random ‘‘price’’ series: (a) sample distribution, (b) sequential
ordering

here: Only the unconditional price distribution is used.) Johnson and
Kotz give results for moments of truncated normal distributions. In
particular, the expected values of singly truncated normals required
here are: ∫ pt

−∞
pf (p)dp = − f (pt)

F(pt)

and ∫ ∞

pt

pf (p)dp = f (pt)
1 − F(pt)

Therefore, expected pure reversion is:

−
∫ ∞

m

1
F(p)

−f (p)
F(p)

f (p)dp +
∫ m

−∞

1
1 − F(p)

f (p)
1 − F(p)

f (p)dp

=
∫ ∞

m

(
f (p)
F(p)

)2

dp +
∫ m

−∞

(
f (p)

1 − F(p)

)2

dp

For a symmetric density, inspection shows that the two terms in the
sum are equal. Algebraically, noting that f(m − ϵ) = f(m + ϵ) and
F(m − ϵ) = 1 − F(m + ϵ), then a simple change of variable, q = −p,
gives the result immediately. The quantity (1 − F(x))/f (x) is known
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as Mills’ ratio. Therefore, expected pure reversion for the normal
independent identically distributed (iid) model is twice the integral
of the inverse squared Mills’ ratio with integration over half the
real line:

2
∫ m

−∞
M(p)−2dp

Panel (b) of Figure 7.2 shows the random sample referred to at the
beginning of the section as a time series. From this series: The number
of downward moves from above the median, {xt : xt > 0 ∩ xt+1 <
xt}, is 351; the number of upward moves from below the median,
{xt : xt < 0 ∩ xt+1 > xt}, is 388; the proportion of reversionary moves
is 100 ∗ (351 + 388)/999 = 74% (the denominator is reduced by one
because of the need to work with pairs (xt, xt+1) and, of course, there
is no value to pair with x1,000).

Revealed reversion for this time series Figure 7.3 shows the distri-
bution of one-day ‘‘price’’ differences for (a) moves from above the
median, {xt − xt+1 : xt > 0}, and (b) moves from below the median,
{xt+1 − xt : xt < 0}. Not surprisingly, for such a large sample the two
look remarkably similar (in fact, the sums, or sample estimates of
expected values, agree to four significant figures); the total of these
moves is 794/999 = 0.795, which is very close to the theoretical
expected value of 0.8. Some discrepancy is expected because treat-
ing the random sample as a time series imposes constraints on the
components of the sets of pairs of values comprising the moves.

Pure reversion for this time series Figure 7.4 shows the distribution
of one-day ‘‘price’’ differences for (a) moves from above the median
in a downward direction only, {xt − xt+1 : xt > 0 ∩ xt > xt+1}, and
(b) moves from below the median in an upward direction only,
{xt+1 − xt : xt < 0 ∩ xt < xt+1}. These histograms are simply trun-
cated versions of those in Figure 7.3, with 0 being the truncation
point. Total pure reversion is 957/999 = 0.95.

This example data is further discussed in Example 5.

Example 2 Prices are distributed according to the Student t distri-
bution on 5 degrees of freedom. A Monte Carlo experiment yielded
the expected revealed reversion to be 0.95 (for the unit scale t5
distribution). Notice that this value is larger than the corresponding
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FIGURE 7.3 Random ‘‘price’’ series: distribution of one-day moves
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FIGURE 7.4 Random ‘‘price’’ series: distribution of one-day moves

value for the unit scale (standard) normal distribution (0.8). The
increase is a consequence of the pinching of the t density in the
center and stretching in the tails in comparison with the normal:
The heavier tails mean that more realizations occur at considerable
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(a) Unit variance normal and Student t5
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(b) Unit variance normal and unit scale Student t5

FIGURE 7.5 Comparison of normal and Student t distributions

distance from the center. Recall that the variance of the t distribution
is the scale multiplied by dof /(dof − 2) where dof denotes the degrees
of freedom; the unit scale t5 distribution has variance 5

3 . Thus, the
t5 distribution with scale 3

5 has unit variance and exhibits revealed
reversion (in this sample) of 0.95 ×

√
3/5 = 0.74, which is smaller

than the value for the standard normal distribution.
These comparisons may be more readily appreciated by looking

at Figure 7.5.

Pure reversion See the remarks in Example 1.

Example 3 Prices are distributed according to the Cauchy distribu-
tion. Since the moments of the Cauchy distribution are not defined,
the measures of expected reversion are also not defined, so this is not
a fruitful example in the present context. Imposing finite limits—the
truncated Cauchy distribution—is an interesting intellectual exercise,
one that is best pursued under the aegis of an investigation of the t
distribution, since the Cauchy is the t on one degree of freedom.

Example 4 An empirical experiment. Daily closing prices (adjusted
for dividends and stock splits) for stock AA for the period 1987–1990
are shown in Figure 7.6. Obviously, the daily prices are not indepen-
dent, nor could they reasonably be assumed to be drawn from the
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FIGURE 7.6 Daily close price for stock AA (adjusted for dividends and stock
splits): (a) actual, (b) standardized for local median and standard deviation

same distribution. These violations can be mitigated somewhat by
locally adjusting the price series for location and spread. Even so, it
is not expected that the 75 percent reversion result will be exhibited:
Serial correlation structure in the data is not addressed for one thing.
The point of interest is just how much reversion actually is exhibited
according to the measures suggested. (An unfinished task is appor-
tionment of the departure of empirical results from the theoretical
results to the several assumption violations.)

The daily price series is converted to a standardized series by
subtracting a local estimate of location (mean or median) and dividing
by a similarly local estimate of standard deviation. The local estimates
are based on an exponentially weighted moving average of recent
past data: In this way an operational online procedure is mimicked
(see Chapter 3). Figure 7.6 shows the standardized price series using
an effective window length of 10 business days; the location estimate
is the median. Compare this with Figure 7.8, referred to later, which
shows the price series adjusted for location only.

For the location-adjusted series, not standardized for variance,
the proportion of reversionary moves is 58 percent, considerably less
than the theoretical 75 percent. Note that 0 is used as the median of
the adjusted series. By construction, the median should be close to
zero; more significantly, the procedure retains an operational facility
by this choice. A few more experiments, with alternative weighting
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schemes using effective window lengths up to 20 business days and
using the local mean in place of the local median for location estimate,
yield similar results: the proportion of reversionary moves being in
the range 55 to 65 percent. The results clearly suggest that one
or more of the theorem assumptions are not satisfied by the local
location adjusted series.

Figure 7.7 shows the distribution of price changes (close–previous
close) for those days predicted to be reverting downward and (previ-
ous close–close) for those days predicted to be reverting upward. The
price changes are calculated from the raw price series (not median
adjusted) since those are the prices that will determine the outcome of
a betting strategy. Figure 7.7 therefore shows the distribution of raw
profit and loss (P&L) from implementing a betting strategy based on
stock price movement relative to local average price. Panel (a) shows
the distribution of trade P&L for forecast downward reversions from
a price above the local median, panel (b) shows the distribution of
trade P&L for forecast upward reversions from a price below the
local median. Clearly neither direction is, on average, profitable. In
sum, the profit is $−31.95 on 962 trades of the $15–30 stock (there
are 28 days on which the local median adjusted price is 0, and
2 × k = 20 days are dropped from the beginning of the series for
initialization of local median and standard deviation thereof).
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120
80
40
0

100
50
0

Moves from above median

(b)

−4 −2 0
Negative moves from below median

FIGURE 7.7 Stock AA one-day moves around local median: (a) from above the
median and (b) from below the median
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FIGURE 7.8 Stock AA local median adjusted close price: (a) time series and (b)
histogram

Figure 7.8 shows the distribution of price minus local median.
Taking this as the distribution in Section 7.2 (with the median therein
becoming zero), the total revealed reversion is $597.79/990 = $0.60
per day. The actual result reported in the preceding paragraph,
$−31.95, shows the extent to which assumption violations (with
unmodeled or poorly modeled structure) impact expected revealed
reversion in this example.

This ‘‘missing structure’’ impact is perhaps more readily appreci-
ated from a pure analysis of the median adjusted series. The revealed
reversion from this series (in contrast to the already reported rever-
sion from the raw price series given signals from the adjusted series) is
$70.17. This means that less than one-eighth of the revealed reversion
from the independent, identically distributed model is recoverable
from the local location adjusted data series. (Outlier removal would
be a pertinent exercise in a study of an actual trading system. In an
operational context, the large outlier situations would be masked by
risk control procedures.) Example 5 attempts to uncover how much
reversion might be lost through local location adjustment.

Figure 7.9 shows the sample autocorrelation and partial auto-
correlation estimates: Evidently there is strong 1- and 2-day serial
correlation structure in the locally adjusted series. Undoubtedly that
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FIGURE 7.9 Stock AA: (a) autocorrelations and (b) partial autocorrelations of
local median adjusted close price

accounts for part (most?) of the deviation of actual revealed rever-
sion from the theoretically expected value under the assumption of
independence.

Pure reversion For the record, total pure reversion in the median
adjusted price series (from the actual time series, since we do not yet
have a closed-form result to apply to the price-move distributions,
although we do know that it must exceed the sample estimate of the
theoretical value of revealed reversion or $597.79) is $191.44 on 562
days. Pure reversion from the raw price series (using signals from the
adjusted series) is just 60 percent of this at $117.74.

Example 5 This is an extended analysis of the data used in Exam-
ple 1. In Example 4, the operational procedure of local median
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FIGURE 7.10 Random price series, local median analogs of Figure 7.2:
(a) histogram and (b) time series

adjustment was introduced as a pragmatic way of applying the 75
percent result to real, but nonstationary, data series. It is of interest
to understand the implications of the operational procedure for a
series that is actually stationary. Such knowledge will help determine
the relative impact of empirical adjustment for location against other
assumption violations such as serial correlation.

Figures 7.10 to 7.12 are local median adjusted versions of Figures
7.2 to 7.4. (The local median is calculated from a window of the
preceding 10 data points.) The summary statistics, with values from
the original analysis in Example 1 in parentheses, are: 77 percent
(74 percent) of reversionary moves; total pure reversion = 900(952);
total revealed reversion = 753(794).

The analysis depicted in Figures 7.13 to 7.15 is perhaps more
pertinent. The median adjusted series determines when a point is
above or below the local median but, in contrast to the case reported
in the preceding paragraph, the raw, unadjusted series is used to
calculate the amount of reversion. This is the situation that would
be obtained in practice. Signals may be generated by whatever model
one chooses, but actual market prices determine the trading result.
Interestingly, pure reversion increases to 906—but this value is still
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FIGURE 7.11 Random price series, local median analogs of Figure 7.3: (a) moves
from the median and above the median (b) moves from below the median
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FIGURE 7.12 Random price series, local median analogs of Figure 7.4: (a) moves
from above the median and (b) moves from below the medium
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FIGURE 7.13 Random price series, signals from local median adjusted series with
reversion from raw series: (a) histogram and (b) time series
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FIGURE 7.14 Random price series, signals from local median adjusted series with
reversion from raw series: (a) moves from above median and (b) moves from below
median

well below the unadjusted series result of 952. Revealed reversion
decreases to 733.

Figure 7.15 is interesting. Notice that there are negative ‘‘moves
down from above the median’’ which is logically impossible! This
reflects the fact that the signals are calculated from the local median
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FIGURE 7.15 Random price series, signals from local median adjusted series with
reversion from raw series: (a) moves from above the median and (b) moves from
below the median

adjusted price series, but then moves for those signals are calculated
from the raw, unadjusted series. The relatively few small magnitude,
negative moves is expected. Curiously in this particular sample,
despite the negative contributions to pure reversion, the total actually
increases; that is the result of the more-than-offsetting changes in
magnitude of the positive moves (in the raw series compared with
the standardized series).

Example 6 Prices are distributed according to the lognormal distri-
bution. If log X is normally distributed with mean µ and variance
σ 2, then X has the lognormal distribution with mean µX = exp(µ +
1/2σ 2), variance σ 2

X = exp(2µ + σ 2)(exp(σ 2) − 1), and median
exp(µ). Using results for the truncated lognormal distribution from
Johnson and Kotz, Volume 1, p.129, total expected revealed rever-
sion is:

exp(µ + σ 2/2)[1 − "(−σ )]

where "(.) denotes the cumulative standard normal distribution
function. Details are given in Appendix 7.1 at the end of this chapter.
Figure 7.16 shows the histogram and time series representation of
a random sample of 1,000 draws from the lognormal distribution
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FIGURE 7.16 Random sample from lognormal distribution (with median
subtracted): (a) histogram and (b) time series

with µ = 0 and σ = 1. (The median, 1, is subtracted to center the
distribution on 0.) The sample value of expected revealed reversion is
1.08 (theoretical value is 1.126). Treating the sample as a time series
in the manner of Example 5, the sample estimate of pure reversion is
1.346.

7.2.3 Movements from Quantiles Other Than
the Median

The analysis thus far has concentrated on all moves conditional
on today’s price being above or below the median. Figure 7.17
shows that, for the normal and Student t distributions, the median
is the sensible focal point. For example, if we consider the subset of
moves when price exceeds the sixtieth percentile (and, by symmetry
here, does not exceed the fortieth percentile), the expected price
change from today to tomorrow is less than the expected value when
considering the larger subset of moves that is obtained when price
exceeds the median.

It is expected that this result will not remain true when serially
correlated series are examined. Trading strategies must also consider
transaction costs, which are not included in the analysis here.
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FIGURE 7.17 Expected pure reversion by conditioning percentile of price
distribution

7.3 NONSTATIONARY PROCESSES:
INHOMOGENEOUS VARIANCE

The very stringent assumptions of the strictly stationary, independent,
identically distributed (iid) process examined in Section 7.2 are
relaxed in this section. Here we generalize the measures of pure
and revealed reversion to the inhomogeneous variance analog of
the iid process. See Chapter 4 for generalization of the ‘‘75 percent
theorem.’’

Prices are supposed to be generated independently each day
from a distribution in a given family of distributions. The family of
distributions is fixed but the particular member from which price is
generated on a given day is uncertain. Members of the family are
distinguished only by the variance. Properties of the realized variance
sequence now determine what can be said about the price series.

7.3.1 Sequentially Structured Variances

Conditional on known, but different, variances, each day a normal-
ized price series could be constructed, then the results of Section
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7.2 would apply directly to that normalized series. Retrospectively,
it is possible to compare a normalized price series with theoretical
expectations (much as we did in Section 7.3 where normalization
was not required); it is also possible to calculate actual pure and
revealed reversion, of course. However, it is not clear that one can
say anything prospectively and therefore construct a trading rule to
exploit expected reversions.

One possibility is to look at the range of variances exhibited and
any systematic patterns in the day-to-day values. In the extreme case
where it is possible to predict very well the variance tomorrow, a
suitable modification of the 75 percent rule and calculation of pure
and revealed reversion is possible. Such calculations would be useful
providing that the same (or, in practice, very similar) circumstances
(variance today versus variance tomorrow) occur often enough to
apply expected values from probability distributions. This may be
a realistic hope as variance clusters frequently characterize financial
series: See Chapter 3 for modeling possibilities.

As a particularly simple special case of perfect variance prediction,
suppose that the only variance inhomogeneity in a price series is that
variances on Fridays are always twice the value obtained for the
rest of the week. In this case, there is no need to expend effort
on discovering modified rules or expected reversion values: The 75
percent rule and calculations of expected pure and revealed reversion
apply for the price series with Fridays omitted. Recall that we are still
assuming independence day to day so that selective deletion from a
price series history does not affect the validity of results. In practice,
serial correlation precludes such a simple solution. Moreover, why
give up Friday trading if, with a little work, a more general solution
may be derived?

7.3.2 Sequentially Unstructured Variances

This is the case analyzed in detail in Chapter 4, Section 3. For
the normal-inverse Gamma example explored there (see Figure
4.2) the expected reversion calculations yield the following. Actual
revealed reversion is 206.81/999 = 0.21 per day; pure reversion is
260.00/999 = 0.26 per day. Notice that the ratio of pure to revealed,
0.26/0.21 = 1.24, is larger than for the normal example (Example
1) in Section 7.3, 0.94/0.8 = 1.18.
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7.4 SERIAL CORRELATION

In Section 7.3, the analysis of stock AA (Example 4) showed that the
price series, actually the local median adjusted series, exhibited strong
first-order autocorrelation, and weaker but still notable second-order
autocorrelation. We commented that the presence of that serial
correlation was probably largely responsible for the discrepancy
between the theoretical results on expected reversion for iid series
(75 percent) and the actual amount calculated for the (median
adjusted) series (58 percent). The theoretical result is extended for
serial correlation in Section 4 of Chapter 4. We end the chapter here
using the example from Chapter 4.

Example 7 One thousand terms were generated from a first-order
autoregressive model with serial correlation parameter r = 0.71 and
normally distributed random terms (see Example 1 in Chapter 4).
Figure 4.4 shows the time plot and the sample marginal distribution.

The proportion of reversionary moves exhibited by the series is
62 percent; total revealed reversion is 315 and total pure reversion
is 601. Ignoring serial correlation and using the sample marginal
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FIGURE 7.18 Analysis of autocorrelated series, Example 7: (a) moves from above
the median and (b) moves from below the median



Quantifying Reversion Opportunities 139

(a)

−4 −2 0 2
0

50

150

Moves from above median

(b)

−2 −1 0 2 431

40

80

0

Negative moves from below median

FIGURE 7.19 Analysis of autocorrelated model, local median adjusted: (a) moves
from above the median and (b) moves from below the median

distribution to calculate the result in Section 7.2.2, the theoretical
revealed reversion is 592—almost double the actual value. Figure
7.18 illustrates aspects of the analysis.

The local median adjusted series (window length of 10) is shown
in Figure 4.4; aspects of the reversion assessment are illustrated in
Figure 7.19. A slightly greater proportion of reversionary moves
is exhibited by the adjusted series, 65 percent (compared with 62
percent previously noted for the raw series). Total revealed reversion
is 342 (compared to 315 in the unadjusted series); total pure reversion
is 605 (compared to 601).

APPENDIX 7.1: DETAILS OF THE LOGNORMAL CASE
IN EXAMPLE 6

Y = log X ∼ N[µY , σ 2
Y]

Set:

E[X] = µX = exp(µY + σ 2
Y/2)
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V[X] = σ 2
X = exp(2µY + σ 2

Y)(exp(σ 2
Y) − 1)

median = exp(µY)

Define Z = X truncated at X0 (equivalently, Y is truncated at Y0 =
logX0. Then (Johnson and Kotz, p. 129):

E[Z] = µZ = µX
1 − "(U0 − σY)

1 − "(U0)

where:
U0 = log X0 − µY

σY

Total expected revealed reversion can be written as E[X|X > m] −
E[X]. Now, E[X|X > m] = E[Z] with X0 = m = exp(µY). In this
case, U0 reduces to 0 and:

µZ = µX
1 − "(−σY)

1 − "(0)
= 2µX[1 − "(−σY)]

Therefore, total expected revealed reversion is:

2µX[1 − "(−σY)] − µX = µX[1 − "(−σY)]

= exp(µY + σ 2
Y/2)[1 − "(−σY)]

Special Case µY = 0, σY = 1. Then µX =
√

e, σ 2
X = e(e − 1), X0 =

median = e0 = 1. Now, U0 = logX0 = 0, so that:

µZ =
√

e
1 − "(−1)
1 − "(0)

= 2
√

e[1 − "(−1)]

From standard statistical tables (see references in Johnson, Kotz,
and Balakrishnan), "(−1) = 0.15865 so the mean of the median
truncated lognormal distribution (with µY = 0, σ = 1) is 2.774.



CHAPTER 8
Nobel Difficulties

Chance favors the prepared mind.
—Louis Pasteur

8.1 INTRODUCTION

I n this chapter, we examine scenarios that create negative results for
statistical arbitrage plays. When operating an investment strategy,

and notwithstanding risk filters and stop loss rules, surprises should
be expected to occur with some frequency. The first demonstration
examines a single pair that exhibits textbook reversionary behavior
until a fundamental development, a takeover announcement, creates
a breakpoint. Next we discuss the twofold impact of an international
economic development, the credit crisis of 1998: introducing a new
risk factor into the equity market—temporary price discrimination
as a function of credit rating on corporate debt—and turning a
profitable year (to May) into a negative year (to August). Next we
consider how large redemptions from funds such as hedge, mutual,
and pension, create temporary disruptions to stock price dynamics
with deleterious effects on statistical arbitrage performance. Next
we relate the story of Regulation FD. Finally, in all this discussion
of performance trauma we revisit the theme of Chapter 5, clearing
up misunderstandings, specifically on the matter of correlation of
manager performance in negative return periods.
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8.2 EVENT RISK

Figure 8.1 shows the price histories (daily close price, adjusted for
stock splits and dividends) for stocks Federal Home Loan Mortgage
Corporation (FRE) and Sunamerica, Inc. (SAI) from January 2, 1996
to March 31, 1998. The two price traces track each other closely
with a strong upward trend, the spread between the two repeatedly
widening and closing.

The analysis and demonstration that follows focuses on pair
spread trading, but the salient points on structural shifts are relevant
more widely to statistical arbitrage models. A factor model forecast-
ing individual stock movements (in groups) is similarly vulnerable
to the described motions, but the mechanics are more involved and
explanation requires greater subtlety of detail. We will keep the anal-
ysis simple and remind the reader once more that the basic points are
applicable more generally to statistical arbitrage models.

Daily returns for the two stocks do not correlate particularly
strongly; the correlation is 0.4. However, looking at returns between
events, the correlation is much higher at 0.7. Event correlation
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FIGURE 8.1 Adjusted price histories for FRE and SAI
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FIGURE 8.2 Adjusted price histories for FRE and SAI to August 1998

indicates what might be expected to trade well in groups within
prescribed risk tolerances (see Chapter 2).

Visually and statistically, it looks as though the pair [FRE, SAI]
will trade profitably in a simple spread reversion model. Simulation
of a basic popcorn process model (see Chapter 2) demonstrates that
was indeed the case.

Figure 8.2 shows the adjusted price series for FRE and SAI
extended through the second quarter of 1998 to August 6. Interesting?
The spread widened considerably to more than double the recent
historical maximum. As already noted, the size of the spread does
not give rise to losing trades, the process of spread widening does.
When a spread begins a persistent period of growth, trades tend to be
unwound (a) after a longer than usual period and (b) when the local
mean spread is substantially different from where it was when the
trade was entered, causing a loss. (This analysis assumes autopilot
application of the forecast model without intervention schemes.
Including monitors and related early exit [stop loss] rules would
attenuate losses but complicate the description without changing the
basic message.)
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Using an exponentially weighted moving average model for an
assumed popcorn process with a constrained trend component (see
Chapter 3) trades in [FRE, SAI] entered in late February lasted
through late April, and trades entered in early June lasted through
early July. Both occasions returned substantial losses. (There was a
fast turnaround, profitable trade in late July.)

8.2.1 Will Narrowing Spreads Guarantee Profits?

Sadly, there are no guarantees of profitable scenarios. However, one
beneficial asymmetry of decreasing volatility compared to increasing
volatility is that in the former case the model’s lagged view works to
advantage when the local mean is changing. (Recall that when the
local mean is not changing, changes in volatility are not a problem,
though there may be opportunity costs, in the form of missed profits,
if volatility forecasts are slow to adapt.)

When the spread local mean is persistently moving in one direc-
tion in excess of the model’s limited pace of adaptation, the strategy
loses because the trade exit point (zero expected return) is bad relative
to the trade entry. Contemporaneous entry and exit points exhibit
the proper relationship; the problem arises from changes over time
as the spread develops differently from the forecast made at the time
of the trade entry. If the prediction of local volatility is greater than
actual volatility, then current trade entries will be conservative (fewer
actual trades, and each with higher expected return). When the trend
continues to the disadvantage of the model, this conservatism reduces
losses, quite the reverse of what happens when volatility is increasing
and the model is underestimating it.

Cutting off losing trades when spread relationships change is
ideal. However, implementing this requires another prediction: a
prediction of the change. Typically the best we can do is identify
change soon after it happens, and characterize it soon after that.
Even this is challenging. See Chapter 3 and the referenced discussion
in Pole et al., 1994.

Looking at current FRE–SAI trades from the perspective of
August 1998 we ask: Must we maintain a persistently losing position?
Obviously not; a position can be unwound at a manager’s discretion.
But when should the pair be readmitted to the candidate trade
universe? The historically tight coupling of FRE and SAI seems to be
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breaking down; if the breakdown applies to the underlying common
structure of the stock return series, then the stocks will cease to satisfy
pair selection criteria and trading will cease. If the common structure
remains, with spreads oscillating about a new level or returning to
the recent historical level, the stocks will continue to be selected and
will again be traded profitably once the disturbance is over.

On Thursday August 20, 1998 the takeover of SAI by AIG was
announced. SAI closed on Wednesday at $64 3

8 the all stock deal
valued SAI at a 25 percent premium (before the market opening).
One might seriously wonder at the nature of the buying pressure
behind the run-up in price of SAI before the takeover.

8.3 RISE OF A NEW RISK FACTOR

The international credit crisis of the summer of 1998 was an inter-
esting time for the practice of statistical arbitrage. Performance
problems began in June and, for many, accelerated through July and
August. During this time, it became starkly apparent for the first time
that perceptions about the credit quality of a company had a direct
impact on investor confidence in near-term company valuation. As
sentiment became negative and stocks were marked down across the
market, the magnitude of price decline was strongly related to the
credit rating of outstanding corporate debt. Companies with lower
rating had their stock price decimated by a factor of three to one
more than companies with a higher rating. Such dramatic discrimi-
natory action had not previously been described; certainly there was
no prior episode in the history of statistical arbitrage.

There are many hypotheses, fewer now entertained than was the
case at the time, about the nature of the linkages between credit and
equity markets in 1998, and why the price movements were so dra-
matic. Without doubt, the compounding factor of the demise of the
hedge fund Long-Term Capital Management and the unprecedented
salvage operation forced by the Federal Reserve upon unenthusiastic
investment banks heightened prevalent fears of systemic failure of the
U.S. financial system. At the naive end of the range of hypotheses is
the true, but not by itself sufficient, notion that the Fed’s actions sim-
ply amplified normal panic reactions to a major economic failing. An
important factor was the speed with which information, speculation,
gossip, and twaddle was disseminated and the breadth of popular
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coverage from twenty-four hour ‘‘news’’ television channels to the
Internet. The large number of day traders and active individual par-
ticipants drawn into the market during the 1990s by the attraction of
the bull run, and trading made easy by technological developments,
provided a receptive audience for the broadcast noise and a fertile
environment in which to germinate and breed fear and panic. There
was much poor decision making borne of instantaneous judgments,
couched as ‘‘analysis’’ though often little more than the rambling of
the moment to fill immediate desire for sound bites, speedily imple-
mented by the facilitating technology. Good for volatility and studies
of lemming-like behavior in cognitively higher order species, bad for
blood pressure and ulcers.

When the impact of the Russian default began to be experienced
on the U.S. stock markets, concern grew that companies would be
progressively squeezed in the market for credit and this concern
led to stock price markdowns. As the crisis continued and stock
prices declined, the prices of companies with lower credit rating
declined faster and cumulatively by more than prices of companies
with higher credit rating, existentially proving the prevalent fear,
rational or not, that tightening credit markets (the link from the
Russian default to this outcome internationally or specifically in the
United States not convincingly, coherently made) would make raising
finance more expensive. And what could be more logical than that
poorer rated companies would have to pay more? The apparent logic
for discriminatory stock price realignment looks unassailable on the
surface. Since that is as far as much ‘‘analysis’’ went (and goes) the
consequences were those of self fulfilling prophecy. Was there ever
a likelihood of U.S. interest rates being raised as a result of the
Russian default?

Corporate debt rating became a significant discriminatory factor
in U.S. equities in the summer of 1998. Any portfolio constructed
absent attention to this factor was likely to be exposed to valuation
loss directly as the lower rated stocks’ prices declined more than
proportionately compared with higher rated stocks. Whether con-
structed as a collection of matched pairs from a vanilla pair trading
strategy or from a sophisticated factor-based return prediction model
makes no difference at the outset. Losses are inevitable.

As the discriminatory stock price patterns developed, discrim-
inatory results distinguished types of statistical arbitrage strategy,
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though manager action in the face of persistent and cumulatively
large losses complicates assessment: the mix of model versus man-
ager (to the extent that is meaningful) being impossible to identify.
Simulation studies devoid of manager contamination indicate that
factor models exhibited more resilience1 than pure spread-based
models, and quicker resumption of positive returns.

With recognition of a new risk factor, what should be done?
Factor models, when the factor decomposition is recomputed using
return history from the period affected, will naturally incorporate
‘‘debt rating,’’ so direct action is not necessary. Inaction does beg
a few questions though: What should be done during the evolving
episode once the factor has been identified (or posited at least)? Is the
best one can do simply to wait for a new window of data from which
to estimate stock exposures to the factor (and meanwhile take a
performance wallop to the chin)? Answer to the latter is obvious but,
beyond a simple ‘‘No,’’ sensible prescriptions are more demanding
to compose. General specification of the foremost requirement is
direct: Eliminate exposure to the posited factor from the portfolio.
Precise action to accomplish that is a tad more difficult—what are
the exposures? In the haste necessitated by the strong emotional push
and business need to staunch losses, luck played its role.

1From where does this greater resilience derive? A partial answer can be constructed
by contrasting a basic pair strategy with a basic factor model strategy (which models
are precisely the source of the simulation results on which the evidential commentary
is made). The pair portfolio consists of bets on pairs of stocks that are matched
on standard fundamental measures including industry classification, capitalization,
and price–earnings ratio. A first-order DLM forecast model is assumed for the
spread (using the log price ratio series), with an approximate GARCH-like variance
law. Bets are made when the spread deviates from its forecast by 15 percent or
more (annualized). All signaled bets are taken and held until the model generates
an exit signal; bets are not rebalanced; no stop loss rule is applied. The factor
model is constructed as described in Chapter 3, with the optimization targeting
annualized 15 percent for comparison with the pair model. Positions are rebalanced
daily according to forecasts and factor exposures.

There is some evidence that credit rating was correlated with a combination
of the structural factors estimated for the factor model. To the extent that is true,
robustness of model performance to the new risk factor is clearly imparted. The
raw stock universe to which the factor analysis is applied (the trade candidates)
has some impact on results, as it does for the pair strategy. Nonetheless, with the
matched stock universe, the factor model displayed desirable performance robustness
compared with the pair model.
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And what of nonfactor models? First, identify how factor risk
is managed in the strategy, then extend the approach to the debt
rating factor. For pair-based strategies, the obvious remedy is to
homogenize all admissible pair combinations with respect to debt
rating. That is, admit only those pair combinations of stocks in
which the two constituent stocks have sufficiently similar debt rating.
Then highly rated stocks will be paired with highly rated stocks,
low rated stocks with low rated stocks, thereby avoiding bets on
stocks that exhibited discordant price moves in response to concern
over the debt factor. Many other aspects of debt rating and related
issues would sensibly be investigated, too, including whether to
employ position weights decreasing with debt rating, restrict low
rated stocks to short positions, or an absolute veto on companies
with very poor debt ratings.

As the research is pursued, an important question to answer
is: What impact would have been seen on past performance of a
strategy from incorporation of new modeling restrictions? It is all
very well to congratulate oneself for finding the proximate cause
of performance problems, to determine and implement prophylactic
changes in one’s modeling, but one also needs to know what impact
on future performance (other than safeguarding when the factor is
active in a negative sense) is likely to ensue. More extensive discussion
of this subject in a broader context of performance disruption is
presented in Chapter 9.

8.4 REDEMPTION TENSION

The pattern of redemption of a broad-based, long-only fund is
perfectly ‘‘designed’’ to adversely impact a fast-turn, long–short
reversion play. Selling off a long-only fund generates asymmetric
pressure on stock prices—it is all one way, down. If the selling is
broad based, and to some extent persistent, then the impact on spread
positions can be only negative.

It is assumed that ‘‘broad based’’ means that a substantial portion
of the stocks traded in the reversion strategy is affected—assume half.
The long portfolio investment strategy, and hence current positions,
is assumed to be unrelated to the reversion strategy: Approximate
this by the assumption that the selling affects equally long and short
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positions of the reversion strategy. So, ‘‘all’’ affected longs reduce in
value under the selling pressure of the redemption activity, and ‘‘all’’
affected shorts reduce in liability. On average there should be no net
impact on the reversion strategy.

True . . . to begin with. But what has happened to the universe
of spreads in the reversion strategy? Those spreads in which both
the long and the short are affected by the downward price pressure
are essentially unchanged: Assume roughly proportional reductions
in price. (In practice, stocks that have been relatively strong will
be the initial focus of selling as the fire sale lieutenant seeks to
maximize revenue—a one-sided, negative impact on a spread bet.
The resulting price change will be larger for weak stocks when they
are sold off, making the net result for a reversion-based book negative
rather than nil. For this discussion, we continue with the optimistic
assumption of zero net impact.) But for those spreads in which only
the long or the short is in a stock facing redemption selling, the
spread will change. Some will narrow, making money; some will
widen, losing money. Still net nothing. But those narrowing spreads
lead to bet exits—profit taking. The widening spreads continue
to widen and lose more. Furthermore, continuing price reductions
cause the spread model to take on new positions, which then proceed
to lose money as the spreads continue to widen under continued
selling. If the selling continues long enough—and for a large holding
this is almost guaranteed—the natural trade cycle of the spread
strategy will complete itself and those new trades will exit, locking
in losses.

The picture can get even worse. When the selling is over, some
stocks recover with a similar trend—as if there is persistent buying
pressure. Who knows why that should be—reversion of relative
value! For those stocks, new spread positions are entered: Remember,
some previously entered positions finished on their natural dynamic
and so the model is sitting and waiting for new entry conditions.
Bingo, furnished as the stock price begins to reclaim lost ground. And
the losing spread bet (now in the opposite direction) is made again.

High-frequency reversion strategies make lots of bets on small
relative movements. Long-only fund redemptions cause price move-
ments of a cumulatively much larger magnitude; the mechanics
described in this section create the conditions for a blood bath for
statistical arbitrage.
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8.4.1 Supercharged Destruction

A large equity statistical arbitrage portfolio is perfectly designed
to create, on liquidation, guaranteed losing conditions for other
statistical arbitrage portfolios. Size matters because the sell-off of
longs and the buy-in of shorts has to persist over the natural cycle of
other players. If it does not, then initial losses will be reversed before
existing trades are unwound; damage is limited largely to (possibly
stomach churning) P&L volatility. Destruction, when it occurs, is
supercharged because both sides of spread bets are simultaneously
adversely affected.

In November 1994 Kidder Peabody, on being acquired, report-
edly eliminated a pair trading portfolio of over $1 billion. Long
Term Capital Management (LTCM), in addition to its advertized,
highly leveraged, interest instrument bets, reportedly had a large pair
trading portfolio that was liquidated (August 1998) as massive losses
elsewhere threatened (and eventually undermined) solvency.

8.5 THE STORY OF REGULATION FAIR
DISCLOSURE (FD)

Regulation ‘‘Fair Disclosure’’ was proposed by the SEC on December
20, 1999 and had almost immediate practical impact. That imme-
diacy, ten months before the rule was officially adopted, is stark
testament to some of the egregious behavior of Wall Street analysts
now infamous for such practices as promoting a stock to clients
while privately disparaging it, or changing a negative opinion to a
positive opinion to win underwriting business and then restoring the
negative opinion!

Activities eventually outlawed by Regulation FD had dramatic
negative impact on statistical arbitrage portfolios in 1999. Most
readily identifiable was the selective disclosure of earnings in the days
before official announcements. Typically, favored analysts would
receive a tip from a CEO or CFO. Analysts and favored clients
could then act on information before it became public. If the news
was good, a stock’s price would rise under buying pressure from
the in-crowd, statistical models would signal the relative strength
against matched stocks, and the stock would be shorted. Days later
when the news was made public, general enthusiasm would bid up
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the stock price further, generating losses on those short positions.
Long positions, signaled when the news was disappointing, suffered
similarly as prices declined, a lose–lose situation for short-term
statistical strategies.

This pattern of behavior became so rife that many market partic-
ipants yelled vituperation; the SEC heard and acted. Notable effects
of the practice disappeared almost overnight.

Privileged information passed to analysts was not a new phe-
nomenon in 1999. Widespread abuse of the privilege was new, or so it
seems from the events just outlined. If abuse existed previously, it was
not noticed. An interesting sidenote to the story is the effectiveness of
analysts. Many analysts with star reputations for making timely and
accurate forecasts of company performance became run-of-the-mill
forecasters after Regulation FD was announced.

8.6 CORRELATION DURING LOSS EPISODES

An investor lament heard when enduring portfolio losses:
‘‘Your results are [highly] correlated with those of other mana-

gers. . .’’ The implication here is that similar bets are being made,
contradicting claims of differentiation through different methods of
stock universe selection, trade identification (forecast model), and
resulting trade characteristics such as holding period. Are the claims
of differentiation false? Is the performance correlation coincidental?

Two distinct, broadly based portfolios of stocks traded with a
reversion model are very likely to exhibit high coincidence of losing
periods. When normal market behavior (patterns of price movement
resulting from investor activities in normal times) is disrupted by an
event, international credit crisis and war are two recent examples,
there is a notable aggregate effect on stock prices: Recent trends of
relative strength and weakness are promoted. During event occasions
(and it is a near universal rule that ‘‘event’’ is synonymous with
‘‘bad’’ news), sell-off activity is always the result. Stocks perceived
as weak are sold off first and to a greater extent than stocks that
are perceived as strong (or, at least, not weak). This is the reverse
of what is expected from a fund satisfying redemption notices—see
Section 8.4. The implication for spread trades is blindingly obvious:
losses. Regardless of the precise definition of a manager’s strategy,
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tradable universe, or specific collection of active bets at the time,
the common characteristic of all spread reversion bets, at a point in
time, is that stocks judged (relatively) weak are held long and stocks
judged (relatively) strong are held short. Mark to market losses
are inevitable.

The magnitude of losses, duration of losing streak, and time to
recovery will vary among managers, being strongly influenced by
individual reversion models and manager risk decisions.

Any economic, political, or other happening that causes investors
to become generally fearful instills a sell mentality. This has an
unambiguous effect on all broad-based portfolios of spread positions
on which mean reversion is being practiced. Unequivocally, perfor-
mance turns negative; directional correlation of managers is high.
Interestingly, numerical correlation may not be high. The magnitude
of returns in negative performance periods can be quite different for
distinct portfolios. There is nothing in the rationale of fear-based
selling to suggest it should be ordered, evenly distributed across
market sectors or company capitalizations, or in any other way tidy.
Typically, a lot of untidiness should be expected. Hence, while man-
agers should be expected to experience common periods of unusual
losses, the correlation of actual returns in losing periods examined
collectively and separately from returns in winning periods may be
positive, negative, or zero.

Losing periods are always followed by winning periods, by defi-
nition. Extended intervals of market disruption punctuated by relief
must, on the arguments given, create similar patterns of losing and
winning intervals for spread reversion strategies.

And what can one say about relative performance of strategies
during generally positive periods for spread trading? Less correspon-
dence of returns for distinct strategies is to be expected. Returns
are dependent on the precise dynamic moves exploited by individual
models. There is no unifying force creating short-, medium-, and
long-term dispersion followed by reversion that parallels the neg-
ative influence of fear. Exuberance is, perhaps, the closest to such
a force, creating reversionary opportunities randomly and at large.
But exuberance is less tangible than fear. It is less likely to induce
common decisions or actions. Investment results for collections of
managers will exhibit looser correspondence, greater heterogeneity
than in periods unfavorable to reversion.
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FIGURE 8.3 Monthly returns for fund A and fund B, illustrating the fallacy of
correlation

Figure 8.3 illustrates the typical situation. Overall, fund A and
fund B show positively correlated returns, with a modest correlation
of 0.4. This correlation result is driven by the two quadrants where
both funds are winners or both are losers (positive–positive and
negative–negative) in which most trading outcomes lie. Within those
two quadrants, the good and the bad strategy periods, correlation
is negative: −0.19 in the bad times and −0.22 in the good times.
This seeming contradiction, positive overall correlation but negative
correlation in all dominant subperiods, is an example of the fallacy
of correlation. Notice that the strength of the relationship between
returns in the negative quadrant is actually lower, at 0.19, than
in the positive quadrant (0.22), which is contrary to the general
expectation described earlier. This example serves to illustrate a
common theme described several times in the text, that while we
can identify and characterize patterns—general or average—there is
always variability to appreciate and contend with. Notice, too, that
there are only ten data points in the negative quadrant, barely one
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quarter of that number in the positive quadrant. Thus, the correlation
is less well estimated (there are fewer degrees of freedom, or pieces
of information, in statistical parlance). And ten is a small number for
estimating a variable relationship—isn’t it?

It is not surprising that losing periods are experienced in common
by different spread reversion strategies. The visibility of such cor-
relation following two extraordinary years of market disruption is
understandable. Understanding why the result is obtained is impor-
tant: Attention is more likely to be rewarded if focus is shifted from
contemplating the unexceptional coincidence of negative returns to
examining where losses have best been contained. Attention should
also be focused on the prospects for a resurgence of the drivers of
spread reversion—on when and whether those drivers will reemerge
strongly enough to create systematically profitable opportunities
for managers (see Chapter 11). Here, there is real possibility of
distinguishing future likely winners and losers.



CHAPTER 9
Trinity Troubles

Extinction occurs because selection promotes what is
immediately useful even if the change may be fatal in the
long run.

—T. Dobzhansky. 1958. ‘‘Evolution at Work.’’
Science 1,091–1,098

9.1 INTRODUCTION

B eginning in early 2000, after nearly two decades of outstanding
profitability, the returns of many statistical arbitrage managers

collapsed to zero or worse. Some managers continued to generate
excellent returns for two more years but they, too, ceased to per-
form starting in early 2002. The split into failures and successes
in 2000 is an interesting historical point in the story of statistical
arbitrage, demarcating a state change in high frequency reversion
dynamics. Of greater significance because of its universal effect, the
performance watershed in 2002 was considered by many to mark
the death of statistical arbitrage as an absolute return generator,
though there remained a few observers who discerned temporary
structural problems and posited conditions under which statistical
arbitrage would rise again. Coherent analysis was not abundant,
investor patience was rarer even than that, and the latter became the
real death knell as it led to investment withdrawal, leaving managers
unable to meet payroll.

At the end of 2005 that was the dire state of statistical arbitrage;
as an investment discipline it had become an unsaleable product.
The year 2006 saw a resurgence in performance, vindicating those
who had maintained that the performance collapse was explained

155
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by a multiplicity of factors, many of which were transitory. With
the passing of those temporary disruptions to market coherence and
consistently predictable security price dynamics, the likely possibility
of a new productive period for statistical arbitrage was anticipated.
We are now nearly two years into just that renewal.

In this chapter, we begin by examining several one-liners loudly
touted as the cause of statistical arbitrage return decline. While each
may have had some negative impact, it is unlikely that the combined
effect has been more than 30 percent of historical return. A significant
reduction, but not a coffin maker for the strategy. Next we expand
the perspective to consider major developments in the U.S. economy
and financial markets, describing the degree to which the impact on
statistical arbitrage is transient. One perspective on 2003 is offered
to set the context of the discussion.

Chapter 10 continues the theme of searching for reasons for
performance decline and sources of a revival. The focus is on tech-
nical developments by large brokerage houses. Long-term impact on
statistical arbitrage is certain, negative for many extant strategies but
creating new opportunities with increasing use of the tools by large
market participants (Chapter 11).

9.2 DECIMALIZATION

‘‘The bid–ask spread reduced from a quarter to two cents has
eliminated the statistical arbitrage edge.’’

Strategies may go by the same generic name, statistical arbitrage,
but there are important distinctions that are critical to under-
standing performance disparities over the last few years as well
as prospects for future performance. Starting in mid-2000, prac-
titioners of high-frequency statistical arbitrage generally achieved
a poor return, in many cases actually negative for much of 2000
and 2001. The declining bid–ask spread, from prices quoted in
eighths to sixteenths to pennies, had an enormous negative impact
on those returns. Furthermore, consolidation of floor specialists into
the now five majors plus two small independents resulted in much
of the intraday and day-to-day price reversion being internalized by
those specialists. With research budgets, computers, and manpower
resources exceeding most statistical arbitrage fund managers, and the
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unfair advantage of order flow visibility, it should not be a surprise
that this has happened (see Chapter 10).

The statistical arbitrage edge was not eliminated. But the high-
frequency opportunity was speedily removed from the public domain
and monopolized by a favored few. Strategies with a holding period
extending over weeks or months rather than days were largely unaf-
fected by the change to decimalization. This dynamic characteristic
of models was significant in explaining the performance split over
2000–2002 described in the opening section of the chapter. To
those exploiting a reversion process fundamentally different from the
high-frequency strategies, the contribution to profit of longer term
bets from bid–ask spreads was fractional. There may have been some
performance deterioration from poorer execution, but not outright
elimination. To see this, let’s take a look at some examples.

Consider an average stock priced at $40 per share. Suppose that
the goal of a strategy is to earn 12 percent per annum, or 1 percent a
month on average. With a holding period of two months, a reversion
bet is expected, on average, to yield 2 percent, or 80 cents. The loss
of the long-time standard bid–ask spread of a quarter, now reduced
to a couple of cents following decimalization, can at most have
eliminated one-third of the expected gain on a bet. Annual return is,
therefore, reduced from 12 percent to 8 percent. This is a worst-case
analysis that ignores the ameliorating possibilities available from
trade timing tactics when trades can be made over several days—an
option not available to higher frequency strategies. The actual impact
of decimalization on the longer term strategy is more marginal.

The story doesn’t end with decimalization, of course, as sub-
sequent sections of this chapter show. Surviving the switch to
decimalization, showing longer term statistical arbitrage strategies
to splendid advantage in 2000 and 2001, did not help counter other
structural changes that cumulated over 2002 and 2003.

9.2.1 European Experience

The European markets have been decimalized for decades yet
high-frequency statistical arbitrage has developed successfully over
the same time. The conclusion must be that decimalization itself
is not a barrier to profit opportunity for the strategy; performance
problems are created by changes in market structure which causes



158 STATISTICAL ARBITRAGE

changes in temporal dynamics, disrupting the patterns that statistical
arbitrageurs’ models are built to predict. European markets are fully
electronic, closer to the NASDAQ than the NYSE in that respect.
Yet statistical arbitrage in all those markets failed to generate a
return in 2003–2004. While it is possible that different causal factors
explain the lack of performance in each of the ‘‘three markets,’’ it
is more likely that a common factor was active. What candidates
might be implicated? The early part of 2003 was dominated by the
Iraq war. But what of the final six months? And 2004? Economic
news gradually shifted from the uniformly gloomy and pessimistic
to generally optimistic, though the negative baggage of U.S. budget
and trade deficits caused much consternation (on the part of com-
mentators and professional economists). It is this change, and the
commensurate changes in investor behavior, that caused the non-
performance of statistical arbitrage across markets and managers. In
each of the markets, other market specific factors undoubtedly were
also present.

9.2.2 Advocating the Devil

Having just argued that decimalization was not a significant factor
in the reduction of return in statistical arbitrage, except for some
high-frequency strategies, let’s consider how the change could have
been detrimental.

There is a lot of anecdotal evidence that liquidity within the day
has changed directly as a result of decimalization: How do these
changes relate to the day-to-day price behavior and trading volume
for statistical arbitrage? Prima facie evidence, the decline of strategy
return, is that market price patterns changed. How? In what ways?
Can a logical connection be made between the observed changes,
decimalization, and statistical arbitrage performance? Without con-
sidering the purported changed mechanics of intraday pricing, let us
suppose the claim of change to be correct. What are the implications
for daily price behavior?

Can a process be elucidated under which continuous trading
from 9:30 a.m. through 4 p.m. will, ceteris paribus, generate daily
price patterns structurally, notably, describably different depending
on the size of the individual market price increment? If not, then
systematic trading models evaluated on daily closing prices will also
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not exhibit distinguishable outcomes except to the extent that the
bid–ask spread (at the close) is somehow captured by a strategy.
In fact, simulations of many such models exhibited poor returns
over 2003–2004. Either the observable, acknowledged, structural
changes to price moves within the day resulting from the change to
decimal quotes and penny increments led to change in the structure
of end-of-day prices across time, or some factor or factors other than
the change to decimalization explain the simulation outcome.

If a contrary observation had been made, then a plausible argu-
ment from decimalization to systematic trading strategy return could
be constructed: If day-to-day trading shows positive return but intra-
day trading shows no return then price moves in reaction to trades
eliminate the opportunity. The evidence to date neither supports
nor contradicts such a hypothesis. It is much more likely than not
that decimalization was a bit player in the explanation of statistical
arbitrage performance decline.

Suppose that statistical arbitrage’s historical performance was
derived solely from systematic obtaining of the consumer surplus
when spreads jump over a trade threshold and fills are obtained at
or better than even that ‘‘excess.’’ If decimalization reduces, almost
to nil, the jump and, we might reasonably suppose (supported by
experience), price improvement, too, then the expected return of bets
similarly reduces to almost nil. This scenario is seductive until one
realizes that it is little more than an elaboration of the bid–ask spread
argument. The consumer surplus of the jump plus price improvement
is quite simply the bid–ask spread (jump) plus price improvement.
Unless price improvement was a major component of strategy return,
this argument is reduced to dust.

9.3 STAT. ARB. ARBED AWAY

‘‘Stat. arb. has not generated a return in two years. It’s edge has been
‘arbed’ away.’’

This was heard with growing clamor as 2004 rolled on. But what
kind of evidence is there for the dismissal? With nothing further than
the observation of recent history offered to support the claim, we
must suppose that the performance evidence was deemed sufficient
proof. As such, the argument is refuted simply by looking a little
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further back. Over the 18 months from mid-1998 through the end
of 1999, the strategy yielded almost nil return (factor-based models
fared better than others), yet the subsequent two years yielded record
rates of return.

An extended period of flat performance does not prove that
patterns of stock price behavior, the source of return from systematic
exploitation, have ceased to exist. Equally, there is no reason to
suppose, solely by examining the numbers, that unusually large
returns, or any particular pattern of returns, will be obtained as soon
as a dry spell ends or, indeed, that there will be an end thereto. To
understand what is possible, one needs to understand the nature of
the stock price movements, the inefficiency that is exploited by the
strategy, and how exploitation is achieved. To go further and posit
what is likely requires one to make statements about various states
of the world and to make forecasts (Chapter 11). Now, of course,
the claim can also be refuted by looking forward from when it was
made to today. Literally, there have been many happy statistical
arbitrage returns.

9.4 COMPETITION

‘‘Competition has eliminated the stat. arb. game.’’
It is tempting to dismiss this claim in an equally disdainful man-

ner as in which it is presented. Leaving aside the implicit belittling
of statistical arbitrage as a ‘‘game,’’ those who practice it as such
are playing roulette. Winning streaks are possible but when things
go wrong the gamesters have no substance to fall back on. Rash
action, desperation, and inglorious exit from the industry follow.
For those who understand the drivers of their strategy and the sub-
tleties of its implementation, shocks are survived through discipline
and control.

Did competition eliminate risk arbitrage as an investment strat-
egy? Quite! The dearth of opportunity during 2002–2005 was not
because of a greater number of practitioners or increasing assets
managed in the strategy, both of which preceded the return decline,
but because of the structural change in the economy. As 2005 drew
to a close, anticipation was already building that merger activity
would increase, resuscitating the merger arbitrage business, with
just a few months of consistently positive economic news. Increased
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participation in the business will have an impact on return as activity
increases. The gains will be smaller on average; better, more expe-
rienced managers will do well if they discover and exploit the new
patterns described in Chapter 11; neophytes, relying on traditional
ideas, will have a more difficult time. Luck will play no small role.

What is the difference between merger and statistical arbi-
trage such that massive structural change in the economy—caused
by reactions to terrorist attacks, wars, and a series of corporate
misdeeds—was accepted as temporarily interrupting the business of
one but terminating it (a judgment now known to be wrong) for the
other? Immensely important is an understanding of the source of the
return generated by the business and the conditions under which that
source pertains. The magic words ‘‘deal flow’’ echo in investor heads
the moment merger arbitrage is mentioned. A visceral understand-
ing provides a comfortable intellectual hook: When the economy
improves (undefined—another internalized ‘‘understanding’’) there
will be a resurgence in management interest in risk taking. Mergers
and acquisitions will happen. The game will resume after an inter-
lude. There is no convenient label for the driver of opportunities in
statistical arbitrage (although some grasp at ‘‘volatility’’ in the hope
of an easy anchor—and partially it may be). There is no visceral
understanding of or belief in how statistical arbitrage works; noth-
ing to relate to observable macroeconomic developments; no simple
indicator to watch. Beyond the visceral one has to think deeply. That
is difficult and, hence, there is much uncertainty, confusion, and
an unavoidable scramble to the conservative ‘‘Statistical arbitrage is
dead.’’ How is the Resurrection viewed, I wonder?

The competition argument deserves serious attention. Though
there are no publicly available figures recording the amount of capital
devoted by hedge funds and proprietary trading desks of investment
banks to systematic equity trading strategies, it can be deduced
from the remarks of clearing brokers; investors; listings in Barron’s,
Altvest, and so forth that both the number of funds and the amount
of money devoted to the discipline increased greatly before 2000.
An immediate counter to this observation as evidence supporting
the competition hypothesis is that the increase in assets and number
of managers has been taking place for two decades yet only with
performance drought is a link to asset-class performance being made.
Statistical arbitrage performance did not decline in tandem with a
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view of how assets/managers increased. The hypothesis was offered
only to explain the cessation of performance for two years; an abrupt
halt to a preceding excellent history. The hypothesis requires, to
overcome the ‘‘convenient but not adequately matched to evidence’’
tag, an explanation of why the competition effect only recently, and
dramatically, became apparent.

With the market in steep decline from 2000–2002, investors pre-
viously shy of hedge funds, including statistical arbitrage, increased
allocations to alternative investment disciplines. Therefore, it may
be argued that there was a step change (increase) in investment in
statistical arbitrage in 2002.

But . . . it did not all happen at the beginning of 2002, did it?
What other evidence, besides assets invested in and number

of practicing managers, can be sought to support or discredit the
competition hypothesis? The superficial argument considered thus
far, increased attention correlated with poor performance, is barely
an argument at all; it is really only a coincidence of observations
with correlation taken for causality and no explanation of how a
causal mechanism might be expected to work. The simplest scenario
is ‘‘many managers were competing to trade the same stocks at the
same prices.’’ Even an approximation to this would be revealed to
participants through liquidity problems—unfilled trades, increased
slippage on filled trades, for example. Evidence to support such an
explanation has not been widely claimed.

If competition during trading eliminates the ‘‘consumer sur-
plus’’ and price improvement (historically part of statistical arbitrage
return) then once again the effect should be visible in end-of-day
closing prices. The fact that many bets continue to be identified with
a substantial consumer surplus component belies the argument. The
reduction in number of opportunities is directly related to volatility,
which may very well be reduced in some part by greater competition
among a larger number of statistical arbitrage managers. That still
leaves the important question: Why is the sum total of return on the
identified opportunities reduced to zero?

Let us accept that competition in systematic trading of equities
has increased. There is no evidence, notwithstanding performance
problems, to support concomitant increase of market impact, and
consequently no evidence that greater competition is the major cause
of the decline of statistical arbitrage performance.
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9.5 INSTITUTIONAL INVESTORS

‘‘Pension funds and mutual funds have become more efficient in their
trading.’’

Three years of market decline pushed many institutional investors
to enormous effort to reduce costs and, hence, losses as return genera-
tion eluded most; transaction costs were prime targets. The argument
is that reversion opportunities historically set up by the large block
trades disappeared as traders of those blocks became smarter with
their trading. ‘‘Fidelity has been a ‘VWAP∗ shop’ for several years’’
is frequently heard as shorthand for the argument. Once again, we
must note that these changes did not happen overnight. To the
extent that such changes have been a factor in statistical arbitrage
performance decline, it is confounded with other changes. Assess-
ing the impact appears to be an insurmountable practical problem.
Certainly, institutional investors are major users of the trading tools
described in Chapter 10 and a substantial impact—negative for
statistical arbitrage—is undoubted.

9.6 VOLATILITY IS THE KEY

‘‘Market volatility ticked up—isn’t that supposed to be good for stat.
arb.?’’

From the beginning of 2002, people began searching for explana-
tions for the lack of return from statistical arbitrage strategies. Many
managers had experienced a meager year in 2001 though many oth-
ers had a good year. But shortly into 2002 managers everywhere
(almost) were experiencing poor performance. The decline in market
volatility was dragooned into service as ‘‘the’’ explanation for the
lack of statistical arbitrage performance. Impressively quickly the
volatility explanation became Antilochus’ hedgehog, a single ‘‘big’’
idea. Combined with investor pleading for silver bullet solutions to
the performance drought, observers might be forgiven for wondering
if they had entered a film set! This chapter and the sequel stand as
explanation in the mode of Antilochus’ fox: many ‘‘small’’ ideas.

∗Volume Weighted Average Price.
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FIGURE 9.1 S&P 500 within industry average local pairwise volatility

Spread bets exploit relative price movement between stocks. It is
interstock volatility that is critical for performance; and interstock
volatility, while constrained by market volatility, is not a simple
function of it (see Chapter 6). Often interstock volatility moves in
the contrary direction to market volatility. In the third quarter of
2003, interstock volatility declined to a record low, even as market
volatility increased. The decline continued through 2004.

Just as interstock volatility is not simply related to market volatil-
ity, so the level of interstock volatility is also not simply related to
strategy profitability. Only a small proportion of the total volatility
is systematically exploited by spread models; large changes in the
level of interstock volatility are observed to have only a small impact
on the magnitude of strategy return (except when volatility decreases
to extremely low levels as seen in 2004 and except for more sophis-
ticated models which capture more of the raw volatility) a larger
impact is observed on the variability of the return. Both relation-
ships are well demonstrated by the contrasting market conditions
and strategy performance in the first and third quarters of 2003. The
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record low level of interstock volatility in quarter three preempted
consistent profitability for the first time that year; volatility was
20 percent higher in the first quarter, yet performance was wholly
negative.

In September 2003, interstock volatility declined to a record
low level, yet reversion opportunities were rich. Statistical arbi-
trage strategies generated a 1 percent return unleveraged in two
weeks.

Unfortunately the trading activity of Janus, funding $4.4 billion
of redemptions precipitated by the firm’s disclosure of participation
in mutual fund timing schemes in contravention to statements in
fund declarations, disrupted price relationships in the second half
of the month. A corollary of the Janus story (the redemption detail
was published in the Financial Times on Friday, October 10) is that
almost certainly more ‘‘disruption’’ should have been anticipated
for October. Morningstar (Financial Times, Thursday, October 9)
advised investors to reduce or eliminate holdings in mutual funds
from Alliance Capital and Bank of America, as managers of those
funds had also engaged in timing schemes.

9.6.1 Interest Rates and Volatility

With very low interest rates, the value of a dollar a year from now (or
five years or ten years) is essentially the same as the value of a dollar
today. Notions of valuation of growth are dramatically different
than when higher interest rates prevail, when time has a dollar value.
With such equalization of valuations and with discriminatory factors
rendered impotent, volatility between similar stocks will decrease.
Higher interest rates are one factor that will increase stock price
discrimination and increase the prevalence and richness of reversion
opportunities. The process of increasing interest rates began at the
end of 2004. The Federal Reserve raised rates in a long, unbroken
sequence of small steps to 5 percent, and statistical arbitage generated
decent returns again starting in 2006.

Volatility has not increased since 2004. Indeed, it declined further
to record low levels. Can volatility rise to historical levels? Absolutely.
But the developments cited here, the rise of VWAP, participation and
related trading, and the trading tools described in Chapter 10 strongly
suggest that it would be foolish to bet on it.
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9.7 TEMPORAL CONSIDERATIONS

The foregoing analysis is entirely static in focus: decimalization,
competition, and so forth are not apparent for any individual trade
(on average) as evidenced through slippage calculations. (If you
prefer, conservatively, there is impact but the magnitude is insufficient
to cause the outcome of zero return.) Statistical arbitrage is not
simply a collection of individual trades either in distinct stocks,
or pairs of stocks, or more general collections of stocks. It is a
collection of linked trades related over time. The temporal aspect of
the trades is the source of strategy profit; trades at a point in time
are the means by which the opportunity is exploited. The foregoing
argument demonstrates that competition has not inhibited the ability
of managers to exploit identified opportunities. But has competition,
or decimalization, or something else altered the temporal structure,
the evolution, of prices such that identified patterns ceased to yield
a positive return? Did short-term stock price structure change such
that systematic trading models were reduced to noise models? If
so, can the progenitor forces driving the evolution be identified?
Was decimalization or competition influential? Were they active
agents, catalysts, or simply coincidental elements? Are they still active
factors? If there are other factors, how have they caused structural
change? Is the process over? Is there a new stable state—now or yet
to be—established, or will the status quo be restored?

Once again, the starting point is the observation that statistical
arbitrage strategies, historically yielding good returns, did not gen-
erate a decent positive return in most cases in at least three years
through 2005. Many such strategies lost money in one or more of
those years. The foregoing analysis has considered widely posited
hypotheses that performance was crowded out by changes effective
at the point of trade placement and shown them not to reliably or
reasonably provide an explanation of the observed pattern of trad-
ing and opportunity set identification. What about the hypothesis
that from the same changes—decimalization, competition, or other
unidentified factors in conjunction therewith—has arisen a change
in the temporal structure of stock price behavior such that previ-
ous models that once had identifiable and systematically exploitable
forecast power now have none? What would one expect to see from
systematic trading strategies if the signal component of the model
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was reduced to noise? Bets would be placed that, on average (and
hence in the aggregate), have zero expected return. With random
elements and varying degrees of expertise on the part of managers
executing trades, systematic strategies would yield zero to negative
performance (transaction costs providing a negative bias to the zero
expected return of raw trades).

On the face of it, three years of essentially flat return by the ‘‘class’’
fits the hypothesis. Is there specific evidence that one might look for
to determine if the hypothesis is merely a fit to the observation
of overall performance or drove the result? If a model has no
forecasting power, then forecast returns should be uncorrelated with
actual returns for a collection of identified bets. The evidence of one
fund is known in some detail. Unequivocally, the evidence refutes
the hypothesis. For the majority of trades over the three years, the
correlation between forecast return and achieved return is positive
(and statistically significant). Many of the trades generated a positive
return, though, on average, a lower return than in previous years.
The minority of losing trades made bigger losses. This is the crux
of the performance problem for many statistical arbitrage managers,
though there are some additional elements that contribute to the
story and have implications for prospective results. In somewhat
handwaving terms, one can characterize the situation as follows: The
signal remained present (generally high percentage of winning bets); it
was somewhat weaker (lower rate of return on round-trip, completed
bets); the dynamic became erratic (variably longer or shorter holding
periods); and the environmental noise increased (higher variance
on losing bets, proportion of winning bets, location of consistent
reversion).

An archetypal example of a wave function, a ripple in a pond, a
sinusoid for those of a technical bent, helps illustrate these compo-
nents, their contribution to bet performance, and the implications of
the changes discussed (Figure 9.2).

To begin with, remember that noise is good: Suppose that obser-
vations were simply scattered about the pure signal with an additive
random element, that is yt = µt + ϵt with ϵt ∼ [0, σ ]. Then a large
noise variance σ would generate series such as Figure 9.3 compared
to low noise Figure 9.4.

The same signal in Figure 9.3 admits a greater return through
understanding of the signal (model) and the impact of the noise
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component. We know where the signal is going and we know how
much variation about the signal may be preempted by the noise.
This leads one immediately to modify a simple exploitation of the
signal forecast, to one that also exploits knowledge of the variation
anticipated from noise. Rather than exiting a bet when the model
forecasts 0, one identifies an interval around the 0 and waits for
an outcome much to one’s favor that will occur according to the
distribution of the noise. This phenomenon is known as stochastic
resonance (see Chapter 3). Enter at a, exit at b and not at c. There will
be gains and losses (missed trades, opportunity costs) compared to the
‘‘exploit the signal’’ model; on average, with good calibration, one
will gain. Clearly, the trade-off of a noise gain against opportunity
cost (capital not available for another new bet) is different—there is
much less potential noise gain—in Figure 9.4.

In 2003–2004, much commentary was made about the inaction
of institutional money managers; ‘‘sitting on the sidelines’’ is an apt
description of both the lack of commitment to active decision making
and the wait-and-see posture adopted in response to a backdrop of
poor economic and political news, not to mention an unprecedented
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three-year rout of equity markets. This reduced level of investing
activity makes an impact on reversion structure (in prices of similar
stocks largely owned by institutions and followed by professional
analysts) in several ways. Foremost is the slowing down of the pace
of reversion—an increase in the period of oscillation in the wave
function in Figure 9.2. Pull apart the ends of the wave in that figure . . .
and . . . things . . . move . . . more . . . slowly. If nothing else changed,
this dynamic shift alone would dramatically reduce strategy return:
If it takes twice as long for a move to occur, then return from that
move is halved.

The practical impact is larger than the archetype suggests; return
is reduced by more than half, because there are compounding factors.
Probably the most significant factor is the ability of a modeler to
recognize the occurrence of the change of dynamic and modify
models appropriately. Working with mathematical archetypes, one
can immediately identify and diagnose the nature of a change (of
period in a sinusoid, for example). With noisy data in which the signal
is heavily embedded in extraneous variation, the task is enormously
more difficult. In many cases, the change is swamped by the noise,
which itself may exhibit altered distribution characteristics as we
are seldom so fortunate that change occurs one factor at a time
or in some other conveniently ordered manner, with the result that
detection of the change takes time—evidence has to be accumulated.
Delays from identifying a change in dynamic result in reduced return
from systematic signal exploitation.

The process of change adds yet another level of complexity and
another source of drag on return. Implicit in the preceding discussion
has been the notion of instantaneous change from an established
equilibrium to a new equilibrium. Rarely is that how systems develop.
Much more prevalent is a process of change, evolution. Such a
process may be more or less smooth but with a signal embedded in
considerable noise, such a distinction is practically moot. Whether
one posits a smoothly changing signal or a series of small but
discrete, differentially sized, changes as the path between equilibria
the outcome is largely the same: further reduction in return as one’s
models are shaped to reflect a new signal dynamic. Overshoot and
elastic-like rebound add yet more volatility and, hence, uncertainty.

Responding to changes in the structure of prices (and other
metrics where they are used) is one of the more difficult tasks facing a
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modeler. Unlike physical processes such as the motion of a pendulum
subject to friction and wear, or chemical processes where impurities
affect conversion properties, and so forth, there is no underlying
theory to guide one’s model building for distortions in the relative
pricing of equities and the impact on reversion mechanics. It is
not a mechanical process at all. It only appears ‘‘mechanical’’ in
‘‘normal’’ times when disturbances are infrequent and have limited
duration impact such that a statistically regular process is observed,
exploited, and return streams are pleasing to investors. Better models
are inherently adaptive so that a change in, for example, the volatility
of a stock price, if persistent, will automatically be identified and
the model appropriately recalibrated. A key requirement for effective
operation of adaptive models is the persistence of a new state. When
uncertainty is reflected through a succession of changes (in, say,
volatility) first in one direction then in another, an adaptive model
can fail ignominiously as it flails hopelessly against waves of varying
magnitude and direction. In such circumstances, rigidity is a better
bet. A modeler, observing markets, the induced adaptations in his
models, and the practical results of trading, ought to develop a
sense of when rigidity is a better vessel than continual adaptation.
A difficulty here is in choosing a model calibration at which ‘‘to
be rigid’’ and when to apply or remove rigidity restrictions. Left
to the informed judgment of the modeler alone, this is an art.
Some modelers are extraordinarily talented in this respect. Most are
hopeless. The temptation to tinker when things are going poorly is,
for many, irresistible, especially for those who do not have a firm
understanding of the process being exploited by the model or how
the model’s performance is affected by violations of assumptions.

With a keen appreciation of the high probability of failure from
tinkering, and a realization of the nature of the difficulties besetting
a model (whether one is able to construct a coherent explanation
of why investors are behaving in ways that cause the aberrant
price patterns), a good modeler looks to build automatic monitoring
systems and to design robust feed forward and feedback mechanisms
to improve models.

Starting with an understanding of the signal that a model
is exploiting, a monitor scheme is constructed to repeatedly ask
the questions, ‘‘Is the data violating model assumptions?’’ ‘‘Which
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assumptions are not being met?’’ One criterion, episodically infor-
mative and efficacious, is the set of conditions in which a model is
known to perform poorly: When a model is observed to be adapt-
ing frequently, back and forth or repeatedly in one direction or
cumulatively by too much, a modeler’s intervention is desirable.

Feedback mechanisms form the bread and butter of an adaptive
model. If stock price volatility is observed to have increased by a suf-
ficient margin, recalibrate the model. Repeated feedback adjustments
outside of the range (frequency, magnitude, cumulative impact) in
which the model is known to perform adequately are a warning
sign for the monitoring process. Feed forward mechanisms are not
typically available to managers: We cannot change environmental
conditions to coerce a desired change in patterns of stock price devel-
opment. Larger funds are reported to engage in activities of this sort,
using, among other schemes, fake or phantom trades—real trades to
reveal to other market participants the manager’s supposedly desired
moves, buy IBM for example; then wait for those others to follow
the lead, buying IBM and pushing up the price; then the fund sells
its holding—its original intention—at prices more favorable than
before the faking operation. Managers do not admit to such activi-
ties. Technological developments may be providing more opportunity
for secret tactical trading: See Chapters 10 and 11.

We entered this discussion of monitoring for and adaptation to
structural change by considering the impact of relative inactivity by
institutional money managers. Such inactivity, or lack of enthusiasm
generally, in an environment exclusive of sources of fear, reduces the
(reversion) opportunity set in a second way. Returning again to the
archetype in Figure 9.2, a lack of energy in a signal translates into
a smaller amplitude (peak to trough range). In terms of a spread
between prices of similar stocks, the action of prices moving apart
either because of nonspecific, local drift or in reaction to investors
pursuing a particular thesis, movements are muted in magnitude as
excitement is constrained by the prevailing environmental condition
of wariness (and in some cases lethargy) borne of a belief that as
things (market themes, prices, activity) are generally not changing
rapidly, there is no sense of likely opportunity loss to be incurred
from taking one’s time.

As institutional money managers saw returns diminish (or disap-
pear, or worse, for three years) many altered their trading tactics as
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part of an attempt to reduce costs. Where traditionally (large) trades
were simply handed over to a block trading desk for execution, man-
agers began working trades directly, reducing (it is claimed) brokerage
charges and slippage costs quite dramatically. It is suggested that this
change (a) contradicts the hypothesis that institutional money man-
agers were less active over 2002–2004, and (b) contributed to the
lack of statistical arbitrage performance.

We do not have figures from which to draw evidence to confirm
or deny (1) and in any case the episode is over, so we will leave it.
Regarding (2), the evidence is to the contrary. If managers responsible
for substantial volumes of trading have changed trading tactics to
become more efficient or to be more proactive in reducing market
impact or to reduce slippage of their trading, what would one
expect to see in statistical arbitrage focused on stocks largely held by
institutions?

To the extent that block trading activity is a generator of inter-
stock dispersion (creating openings for reversion bets), a shift away
from block trades to more intensively managed, smaller trades with
greater control of slippage would reduce the reversion opportunity
set. We would see a diminution in the average richness of rever-
sion signals: A manager moving capital into, say, drug stocks would
cause, for example, the Pfizer-Glaxo spread to move by a smaller
amount than under the less demanding block trade approach. With
a smaller initial dislocation, the amount of reversion is reduced. It
is also possible that the number of economically interesting rever-
sion opportunities would be reduced, though with other sources of
market price movement present it is not obvious that this would
be a significant effect. By itself the reduction of average reversion
per bet would reduce strategy return. However, other effects of the
trade tactic change make that conclusion premature. With managers
more directly active, it is likely that their own trading decisions that
act to enforce reversion would increase the pace at which reversion
occurs. Faster reversion works to increase return (assuming that
there are enough reversion opportunities to fully employ capital).
While it is possible to argue that managers will act in the manner
described to reduce average dispersion, hence potential reversion, yet
not act as robustly to correct a mispricing when seeing one, it is
unreasonable—you cannot have it both ways.
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Is there any evidence to support the outcome that greater micro
trade management by institutional money managers implies? It is
abundantly evident that the pace of reversion slowed, not accel-
erated, during 2002–2004. The evidence on richness of reversion
opportunities is more equivocal. There have certainly been periods
where interstock volatility has been at a record low level—March of
2003 stands out as a period when most stocks moved in close unison.
But here the diminished volatility was the result of global security
concerns; it had nothing at all to do with money managers watching
the dollars and cents.

9.8 TRUTH IN FICTION

The accusations flung at statistical arbitrage as reasons for its poor
showing each include a truth. Each of the causes posited have had a
negative impact on the size of return that statistical arbitrage models
are able to generate. But in sum these slivers of return amount to no
more than 30 percent of the return ‘‘normally’’ (that is, before 2000)
generated. We are impelled1 to search for a wider rationale for the
performance collapse in statistical arbitrage. Hints are apparent in
the previous section on temporal dynamics. Now we can be more
explicit.

9.9 A LITANY OF BAD BEHAVIOR

Table 9.1 lists a series of events spanning the two years 2002–2003,
each of which had a significant impact on business practices and
financial market activities greatly in excess of ‘‘normal’’ change.
Most events were negative, in that shock, disgust, and not a little
horror characterized the reactions of many.

The first few months of 2002 subjected people to an unprece-
dented (?) series of appalling revelations about the activities of
business leaders and opinion-leading Wall Street personalities. These

1Stephen J. Gould, 2002, The Structure of Evolutionary Theory, provided the phrase
‘‘impelled to provide a wider rationale for’’ shamelessly borrowed for my purpose
here.
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TABLE 9.1 Calendar of events

Date Event

December 2001 Enron
January 2002 Accounting scandals, CEO/CFO malfeasance

Wall Street research: lies, damned lies, and millionaire
analysts

August 2002 Corporate account sign-off
October 2002 Mutual fund retail investor panic
November 2002 SARS
March 2003 Iraq war

Dividend tax law revision
NYSE/Grasso compensation scandal

October 2003 Mutual fund market timing scandal
December 2003 Statistical arbitrage investor flight

events delivered emotional punch after punch to a populace still in
a deep sense of shock following the terrorist attacks on the United
States on September 11, 2001. Unsurprisingly, the financial market
parallel to the shifts in macroeconomic activity was structural change
in the relationship of stock prices on a huge scale and with the effects
of one change merging into the next. No rest. No respite. Conti-
nuous turmoil.

As 2002 was drawing to a close, the SARS (severe acute respira-
tory syndrome) scare dealt another blow to international air travel
with impact on international tourism. In late 2004, the World Health
Organization attempted to raise consciousness about Asian bird flu,
forecasting that the serious outbreak in Asia threatened to become a
worldwide epidemic that could kill 50 million people.2

As of now there is no sense of panic, even urgency on the part
of political leaders or populations. Little heed at all seems to have
been taken. That reaction is astonishingly different to the reaction to
SARS just two years earlier. Can it be that people have become bored
with scare stories?

Along with SARS the world watched the inexorable buildup of
U.S. military forces in the Gulf of Arabia. Would the United States

2January 13, 2007: Thankfully no epidemic has occurred, but concern remains as
deaths of farmers in China and elsewhere in Asia continue to be reported.
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invade Iraq? The watching and waiting continued through March
2003 when the United States did invade. During the three weeks
of ‘‘active hostilities,’’3 the markets ceased to demonstrate evidence
of rational behavior on the part of investors. If television showed
pictures of explosions with reports of problems for American troops,
no matter how local a battle was being described, markets moved
down. If television showed pictures of American military hardware
on the move or cruise missiles raining down on sand, markets moved
up. So much for the sophistication of the most sophisticated investors
in the world in the most sophisticated markets in the world. If this
were not real, with real implications for livelihoods, it would be truly
laughable.

In the last quarter of 2003, evidence of maturing investor response
to yet more bad news was readily visible in the reactions to (then)
New York attorney general Spitzer’s revelations of illegalities on the
part of mutual funds. No wholesale rout of the industry ensued.
Investors calmly withdrew from the shamed funds and promptly
handed over monies to competitors. The surprise value of further
bad faith activities on Wall Street (a convenient, if amorphously
uninformative label) was met with rational analysis and not shocked,
unthinking panic. Doubtless a rising market for the first time in three
years had a powerful aphrodisiac effect.

The sequence of shocking events, each starkly disgraceful indi-
vidually, is an appalling litany. Added to globally disruptive events
(war, health scare) there were two years of uninterrupted instability
in the financial markets.

How does market disruption affect the process of relative stock
price reversion? Figure 9.5 extends the previous view of an archetype
spread (Figure 9.2) to cover a period of disruption. A spread is pushed
unusually far out of its normal range of variation by undisciplined
investor behavior but after the cause of the panic is over, or as panic
reaction dissipates and discipline is reestablished, the spread resumes
its normal pattern of variation.

3The occupation of Iraq has been an unending run of active hostilities. The hostility
of insurgents remains virile; in early 2007 President Bush directed 20,000 additional
U.S. troops to be sent to Baghdad. However, events in Iraq have long ceased to have
noticeable impact on financial markets.
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FIGURE 9.5 Sine wave with temporary perturbation

The model has at time t2 a different assessment of the normal
behavior of the spread than it does at time t1 (just as it potentially
has a different view at all times but consideration of just a few points
is sufficient for a clear illustration of the temporal development, the
evolution of views encapsulated in an adaptive model). Depending
on the model’s look back, the rate of information (data history)
discounting, the projection of future pattern—focus on the mean
for this analysis—will vary. A shorter look back (faster discount)
will project a higher mean (also greater amplitude and longer phase)
and will signal exit too early, which will lock in a loss on the
trade. A longer look back (slower discount) will generate standard
profit (in this example) but over an extended duration, hence, much
lower return. Nowhere will gains be accelerated. Hence, return
unambiguously must decline (in the absence of intervention).

In the next section we offer a particular view of the unfolding
psychology of market participants over 2003. This is intended as a
serious analysis (though necessarily of limited scope) of the nature
and causes of observed changes in market participants and the result-
ing effects on security price development. It builds on the description
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of events just given, the goal being to reveal the extent of the changes
in the U.S. macro economy, polity, and financial markets. Section
9.11 describes how such tectonic shifts in environment affect quanti-
tative models and what modelers can do to manage the shifts. Section
9.8 foreshadows that discussion. There are no simple one-liners in
these descriptions and analyses. The world is not so obliging. Statis-
tical arbitrage did not generate a return in three years for multiple
reasons, differentially across strategies, differentially across time.
What happened in 2005 is not what happened two years previ-
ously. Attempting to explain the failure by citing one or two easily
spoken reasons, as if trying to pin a tail on a donkey, is unhelp-
ful. It simplifies the complexity beyond the point of understanding,
leading to misunderstanding. It eliminates any ability to sensibly pos-
tulate what is realistically possible for statistical arbitrage. With the
return of statistical arbitrage performance since 2006, the criticisms
voiced during 2003–2005 have magically been forgotten. Chapter
11 tells how the statistical arbitrage story is about to write a new,
positive chapter.

9.10 A PERSPECTIVE ON 2003

Trading intensity in the first quarter was low because of investor
hesitancy in taking positions as the United States prepared to go,
then went, to war. Following the three weeks of active hostilities,
investor activity in the markets was at times tentative, skittish, manic.
As early as last quarter 2003, it was possible to see, swamped in
short-term variability, a trend of steady improvement in tenor: Uncer-
tainty had decreased, conviction and the willingness to act thereon
had increased; companies were again investing strategically, imple-
menting long-term plans rather than substituting short-term holding
actions; individuals were increasingly leaning toward optimism on
prospects for employment opportunities and stability. Crucially, the
pervasive sense of fear, not at all well defined or articulated but
palpable from late 2002 through May 2003, was gone.

The summer recess both interrupted and contributed to the
post-war recovery. Distance in time provides perspective; a change
in routine, vacation, encourages reflection. The doldrums of summer
(interstock) volatility were lower than had been seen before, partly
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because of the low pre-summer level and partly because of the clear
need for people to take a break. Two critical changes in perception
occurred.

The tragic, daily loss of servicepeople’s lives in Iraq impinged
on the general populace’s consciousness with the interest, intensity,
and indifference of the latest rush hour traffic accident: It is there,
it is unfortunate, but it is reality. The U.S. economy was discussed
in encouraging terms of growth and stable employment. Deflation
had resumed its traditional role as a textbook scenario. The number
of people who understand or care about government deficits and
the implications—until they occur—is tiny. Such broad changes in
perception have an indelible imprint on financial markets.

Transition from war edginess and economic gloom to war
weariness (dismissal) and the excitement of economic potential,
opportunity: Market price behavior in the latter part of 2003 reflected
investor fervor, alternately hesitant, rushed, somewhat erratic; gen-
erally untidy, undisciplined.

9.11 REALITIES OF STRUCTURAL CHANGE

The complexity of the process of change is revealed in the mixed
signals of market condition tracking and prediction models. From
March 2003, early in statistical arbitrage’s performance desert, these
models simultaneously indicated both a shift from negative to positive
bias and continued negative bias. Unique in more than a decade, the
schizophrenic indicators revealed a market structure in which that
structure is mixed up, unsettled, and in transition. The evolution
of the indicators, if one were to imbue them with some life force,
engenders the impression of a relentless striving for equilibrium,
increasingly confident each month.

Adapting to the changes in market price behavior that reflect
the enormous changes in perceptions, concerns, assessments, and
ultimately, actions of market participants is extraordinarily difficult.
For models designed to exploit an identified pattern of behavior in
prices, the task can be impossible (if the exploited pattern vanishes)
and often models simply ‘‘do not work’’ during market structural
change. Evolution and adaptation are possible in better models but
large, abrupt shifts and repeated shifts are immensely difficult to
manage well.
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Statistical arbitrage models have no special protection from the
impact of market upheaval. The fact that performance diminished
to little more than money market returns in conditions, known with
20–20 hindsight to be quite unfavorable for reversion exploitation
(lack of consistent behavior untrammeled by decisions borne of
panic), is a testament to the careful construction of traded portfolios,
strict adherence to model application where signals are detected,
and concerted focus on risk analysis. Critical to risk control is an
understanding of the process exploited by the model: in short, why
the model works. Reversion in relative prices of similar stocks did
not evaporate—models systematically identified opportunities and
trading has routinely exploited those opportunities. Reversion did
not evaporate. The environment in which reversion occurred was
changed, transforming how reversion is identified.

Changes of state are typically unrewarding periods, even negative,
for statistical arbitrage. Models, good models, are crafted carefully
to adapt to changes in important characteristics of market price
behavior pertinent to model predictive performance. But no matter
how hard model builders try, diligence cannot compete with good
fortune when structural changes occur. It behooves us to admit that if
we can avoid losses during structural change, while recrafting models
to encapsulate the new structures, then we have done well.

9.12 RECAP

At this point we have concluded that a third of the historical
performance of statistical arbitrage may have been eliminated by
market developments during 2000–2002, changes that will not be
reversed. The loss of the bulk of the historical return in 2002–2003
was the result of a series of massive disruptions to the U.S. economy,
the ramifications for statistical arbitrage having (most likely) been felt
in their entirety by some time, probably early, in 2004. The frequency
of disruptions has been greatly reduced; though there continue to
be market effects as the structural changes play out, the impact
on statistical arbitrage is no longer significant. Stock-specific events
continue to occur, two examples in 2004 being the withdrawal of
the drug Vioxx by Merck and the investigation of Marsh McLennan
by (then) New York attorney general Elliot Spitzer. Extraordinarily
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low volatility coupled with high correlations is a major limitation
on what can be made from reversion plays. Correlations have now
decreased, increasing the short-term reversion opportunities. Work-
ing to keep correlations higher than historical norms is the growing
use of exchange traded funds. As investors shift to ETFs, ‘‘everyone
becomes a de facto indexer.’’ Volatility will continue to be constrained
by the widespread use of sophisticated trading tools (Chapter 10).
But that very same causal factor is contributing to the renaissance of
statistical arbitrage by creating new kinds of systematic stock price
patterns, as elucidated in Chapter 11.





CHAPTER 10
Arise Black Boxes

Felix qui potuit rerun cognoscere causas.
Happy is he who can know the cause of things.

—Virgil

10.1 INTRODUCTION

H aving invented the pairs trading business two decades ago,
Morgan Stanley was at the forefront of the creation of a new

business in the early 2000s; a less risky, more sustainable business,
which, in a wonderful example of commercial parricide, has systemat-
ically destroyed opportunities for old-line pairs trading. Algorithmic
trading was born. Huge order flow from institutions and hedge funds,
much of which is electronically matched in house, provided multiple
opportunities for bounty beyond the expected brokerage fees. Com-
bining the insight and knowledge learned from proprietary trading
(beginning with the classic pairs trading business) with analysis of
a warehouse of order flow data, Morgan Stanley and other brokers
built trading tools that incorporate models for forecasting market
impact as a function of order size and time of day, moderated by
specific daily trading volume stock by stock.

Recognizing that there was an enormously lucrative opportunity
hanging on simple to use, automatic trading technology that did not
systematically incur slippage, brokers elected to offer the tools to
clients. It was a masterfully timed decision. Coming as new statistical
arbitrageurs were appearing with abandon, vendors were able to
seduce those whom their tools would eventually help destroy, along
with existing clients thirsting for any new edge that had the promise
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of lower transaction costs or marginal improvements in execution
price. The genius of the business was compounded as the institutional
and statistical arbitrageurs’ order flow provided an ongoing feast of
data for the data miners whose voracious appetite for such cannot
be sated.

Patterns of transaction volume by stock, by day of the week, by
time of day, and by current day’s trading volume were constructed
from the mined data. The mere ability to predict with measurable
efficacy how much would be given up from current price to buy or
sell a specific number of shares in a fixed period was a stunning
development to traders. Hedge funds had for years made their own
attempts; using their much less rich data than broker archives it is
unlikely their achievement matched the brokers’ success. Regardless,
an edge was eliminated.

Fitting logistic-type models to order flow and fill data quickly
produced the first generation of models, allowing traders to obtain
quantitative answers to frequently faced, urgent questions:

■ How much will I have to pay to buy x thousand shares of XYZ
in the next half hour?

■ How much will I have to pay if I wait the remainder of the
trading day?

■ How much can I sell of XYZ in one hour keeping the impact to
k cents?

An unadvertised beauty of these tools is the self-propagating
nature of the opportunity set. As traders switched to the technology,
a new set of order flow information was presented to and collected
by vendors. Now it was possible to examine the trading of both the
impatient ‘‘pay up and get it done’’ and the relaxed ‘‘wait and see’’
players. Models of client profiles, built automatically from the client
order flow, trading tool configuration, and fill/cancel–correct records
practically generate themselves. With the ability to gauge how much
a client would be willing to pay for a fill, and estimates of how long
it would take to get the trade at much lower market impact, the
many possibilities fairly screamed themselves to researchers, echoing
and amplifying the old-line pairs trade screams heard by a previous
generation two decades earlier.
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All of this opportunity offered itself for reaping without require-
ment of capital commitment. The risk of proprietary trading was
eliminated and the ‘‘new’’ business became infinitely scalable.

Morgan Stanley has competitors, of course. Algorithmic trading
tools have been developed and marketed by Goldman Sachs, Credit
Suisse First Boston, Lehman Brothers, Bank of America, and others.

10.2 MODELING EXPECTED TRANSACTION VOLUME
AND MARKET IMPACT

The place to begin is the data mine. What data is available and
which of it is pertinent to answering the ‘‘How much. . . ?’’ questions.
Suppose that for stock XYZ there is a history of daily transaction
volume data by individual trade, for over ten years. That is 2,500
days of daily transaction material. The first thing to do is examine
the cumulative trade volume by day: Every stock has a distinctive
character to its pattern of trading over the day, a footprint if you
like. Using a one-shoe-fits-all approach, forecasting an elephant’s
footprint using a generic mammal footprint may work but will suffer
from needlessly large inaccuracies (noise or error variance). Worse
would be to use an asp’s footprint (try to describe it). You can see
the problem.

The problem is easily addressed by applying a modicum of speci-
ficity in the data analysis and model building. Computers don’t care
how many model variants they process. You should care, however;
overspecificity where it is unnecessary also leads to over-large predic-
tion variance because a finite data resource does not yield an infinitely
divisible reservoir of information. The more the data is carved into
different animals, the less information there is on each. If two or more
animals are essentially identical (for the purpose under investigation)
the data is best pooled. Moreover, the more models one tests on data,
the greater the likelihood of finding a spuriously good fit. These are
well known, though often ignored, details of good applied statistical
analysis.

Begin looking at the data with a view to identifying a trading
day pattern in transaction volume. How to characterize it? While
it is unlikely that the daily pattern ten years ago is close to the
daily pattern today, it would be inadvisable to assume so. Remember
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that reversion patterns exploited by the original pairs trade persisted
with economically exploitable frequency and magnitude for a decade
and a half before technological and market developments caused a
dramatic change. Examine some daily cumulative transaction volume
charts from ten years ago, some from five years ago some from this
year. You will notice a similar form to the graph (curve) but obvious
differences—faster cumulation early in the day and again late in the
day comparing recent patterns to earlier patterns. Better not simply
aggregate all the data and estimate an average curve then.

Look more closely at daily patterns for the last three months.
That is 60 charts. Examine a three-month set from ten years ago.
You notice quite a lot of overlap in the basic shapes. But look at the
scales: The stock trades at much higher volumes now than it did a
decade ago. Hmmm. Rescale the graphs to show cumulative percent
of daily total volume. Now all graphs are on the same 0–100 scale.
Aha! There is much less variability in the patterns of the last quarter.
So, whether a given day is relatively high or relatively low volume, a
similar pattern for the trading over the day is revealed.

How do we use this insight? One goal is to represent the curve (of
cumulative percentage trade volume in a day) in a way in which it will
readily yield the proportion of a day’s trade volume in the market at a
specific time. In other words, to provide a ready answer to questions
such as, How much of the volume is transacted by 2 p.m.? There are
many mathematical functions that have the generic S shape required:
Cumulative density functions of probability distributions provide a
natural set since distributions are precisely what are being examined
here. A convenient form for statistical model building (which we
have not yet considered) is the logistic function.

Pick a function. Fit it to the data. You can now readily make
sensibly quantified stock-specific responses to the question: How
much of the day’s volume is transacted by 2 p.m.? On average . . .

Now today happens to be a reasonably heavy trading day for the
stock, with 4 million shares traded by 11:30 a.m. How many shares
are expected to trade by 2 p.m.? From the estimated pattern, fully
30 percent of the day’s volume is typically transacted by 11:30 a.m.,
and 40 percent by 2 p.m. Easily you compute 1.3 million shares
are expected to trade over the next 90 minutes. You want to trade
100,000 shares. Should not have to pay much to achieve that. Right?
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The foregoing analysis considered only transaction volume; price
information in the record has not yet been examined. Let’s redress
that directly. In the set of 60 days of trading data for XYZ, there
are many individual buy and sell transactions for order sizes as small
as 100 shares to as large as 100,000 shares. The fill information for
all orders is also recorded. Plotting order size against the change in
price from the order price (or market price at time of order) and the
average fill price shows a definite relationship (and a lot of variation).
Once again, some of the variation magically disappears when each
day is scaled according to that day’s overall volume in the stock.
Orders, up to a threshold labeled ‘‘visibility threshold,’’ have less
impact on large-volume days.

Fitting a mathematical curve or statistical model to the order
size–market impact data yields a tool for answering the question:
How much will I have to pay to buy 10,000 shares of XYZ? Note
that buy and sell responses may be different and may be dependent
on whether the stock is moving up or down that day. Breaking down
the raw (60-day) data set and analyzing up days and down days
separately will illuminate that issue. More formally, one could define
an encompassing statistical model including an indicator variable for
up or down day and test the significance of the estimated coefficient.
Given the dubious degree to which one could reasonably determine
independence and other conditions necessary for the validity of such
statistical tests (without a considerable amount of work) one will
be better off building prediction models for the combined data and
for the up/down days separately and comparing predictions. Are
the prediction differences of practical significance? What are the
differences?

One drawback of fitting separate models to the distinct data
categories is that interaction effects (between volume, up/down day,
buy/sell, etc.) cannot be estimated. If one is looking for understand-
ing, this is a serious omission as interactions reveal subtleties of
relationships often not even dimly suggested by one-factor-at-a-time
analysis. If one is looking for a decent prediction, the omission is intel-
lectually serious (if there are interactions) but practically (depending
on the nature of the interactions) of less import.

Time of day is also significant in market impact estimation—recall
the analysis of the cumulative trading volume pattern over the day.
Filling an order during the ‘‘slow’’ or more thinly traded part of the
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day requires either more patience for a given slippage limit or a will-
ingness to increase that limit. Time of day was not addressed in the
order size–market impact analysis outlined previously. Obviously it
can be, and the obvious approach is to slice the data into buckets
for the slow and not slow parts of the day (or simply do it by, say,
half-hour segments) and estimate individual models for each. While
the statistical modeling and analysis can be made more sophisti-
cated, the simple bucketing procedure posited here serves to exemplify
the opportunity and the approach. (Examples of fruitful sophistica-
tion include formally modeling parameters across time slices with
a smooth function, and employing classification procedures such as
regression trees to identify natural groupings.)

10.3 DYNAMIC UPDATING

Examining the basic patterns of daily trading volume from ten years
ago and more recently has prompted the realization that patterns
have changed. Immediately one is confronted by the problem of
how to manage the change in predictive models estimated from
the data. The first action was to use only recent data to build the
model to use now. We’ll assume recent time at 60 days. Now one
is confronted by the question, When should the models be revised?
We are once again faced with the questions about types of change,
rates of evolution, and methods of dynamic updating that were
discussed with respect to the reversion models in Chapter 2. The
basic issues here are no different. One might reasonably elect to use
a rolling 60-day window, reestimating modeled relationships each
day. One might also routinely compare the latest daily pattern with
the distribution of patterns seen (a) recently or (b) further distant
in time to make a judgment about whether today is unusual. If
it is, perhaps it would be wise to apply a ‘‘conservatism filter’’ to
the forecasts? A measure of the rate of change could be devised
(there are standard ways of comparing probability distributions,
from summary statistics, including moments, to integrated measures
of information), and employed to build a general dynamic updating
scheme that is more flexible than the simple 60-day moving history
window.
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10.4 MORE BLACK BOXES

We have deliberately singled out Morgan Stanley at the beginning of
the chapter because of the link to the genesis of our major theme:
statistical arbitrage. But Morgan Stanley is not the only firm to
have analyzed transaction data and offered tools to the marketplace
encapsulating trading intelligence discovered therefrom. Goldman
Sachs’ operations on the floor of the NYSE—the Spear, Leeds &
Kellog specialists bought in 2000—represent a gold mine potentially
even more valuable than Morgan Stanley’s database. Bank of America
bought the technology of hedge fund Vector in 2002: ‘‘. . . computer
algorithms will factor in a particular stock’s trading characteristics
and BofA’s own position in it then generate buy and sell quotes’’
(Institutional Investor, June 2004; italics added for emphasis). Credit
Suisse First Boston (CSFB) hired a former employee of the renowned
and technologically advanced hedge fund D.E. Shaw, and built a tool
that ‘‘processes fully 40% of its [CSFB’s] order flow’’ (Institutional
Investor, June 2004); Lehman Brothers and more than a dozen others
are also in the business.

In addition to the developments just listed, at least one new
brokerage, Miletus, has been spun out of a billion dollar hedge
fund to monetize the value in the trading algorithms developed for
the hedge fund’s own trading. In another technology driven devel-
opment, beginning with Goldman Sachs in late 2006, at least two
offerings of general hedge fund replication by algorithmic means have
been brought to market. As these instruments gain popularity there
are likely to be new systematic pattern generating forces added to
the market.

10.5 MARKET DEFLATION

Figure 10.1 depicts the market for buying and selling stocks, a generic
market where buyers and sellers come together to agree on a price
for mutually acceptable exchange of ownership. There are many
buyers and many sellers. Lots of individual excitors. Many points of
agreement. Substantial volatility.

Figure 10.2 depicts the arriving market for buying and selling
stocks. The many individual buyers and sellers come together by
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the intermediating management of a handful of computer algorithms
which internally cross a substantial portion of orders and satisfy
the residual by restrained, unexcitable exchange in the central
market. There are many buyers and sellers. Many points of agree-
ment. But less unmitigated agitation than the traditional bazaar.
Constrained volatility.



CHAPTER 11
Statistical Arbitrage Rising

. . .to worry about everything is unnerving. It is also
counterproductive, for it can result in continual tinkering
with a correctly operating system in response to imagined
phantoms in the data.

—Statistical Control by Monitoring and Feedback
Adjustment, Box and Luceno

B y the end of 2004, statistical arbitrage practitioners had been
beleaguered for a year. Investors and commentators cite perfor-

mance volatility but no return set against market advance (in 2003);
adduce accusative assertions of irreversible decline from visible mar-
ket changes; and largely turn deaf ears to the necessary complexity
of the reality (see Chapters 9 and 10 for a full exegesis).

Set against that siege is the present discourse and a return of
performance since 2006. Chapters 2 to 8 set out the nature and
extent of traditional statistical arbitrage opportunities, approaches to
formal modeling and systematic exploitation of those opportunities,
the nature of market dynamics that wreaks havoc on portfolios
built and managed according to statistical arbitrage models. Chapter
9 examines one-liner condemnations of the discipline, the logic of
which is: This change eliminates a part of statistical arbitrage return;
the change is permanent; your opportunity set is therefore gone. The
claims are found pertinent but inadequate to explain the record. The
far more complex reality is no less devastating but, upon deeper
reflection, cannot support condemnation. In their complexity, the
enduring elements are not wholly destructive of statistical arbitrage.
To the contrary, some of the more far-reaching market structural
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changes, set out in Chapter 10, necessarily create conditions for
a new statistical arbitrage paradigm. That emerging paradigm, its
driving forces and consequent statistically describable and therefore
exploitable stock price patterns, is set out in this chapter. It both
concludes the present volume and sets the scene for a subsequent
history to be written some years hence.

A few statistical arbitrage practitioners with long and outstand-
ing performance pedigrees continued to deliver reasonable to good
returns while most have failed as described in earlier chapters.
This evidence supports the claims of (a) incomplete destruction of
traditional statistical arbitrage opportunities and (b) genesis and
development of new opportunities, though only proprietary infor-
mation could reveal to what extent the evidence supports each claim
individually. Evidence in the analysis of the public record of stock
price history strongly suggests that the opportunity for extracting
outsize returns from high-frequency trading—intraday—is huge.
From the discussion throughout this book, it is clear that exploiting
that opportunity requires different models than the traditional mean
reversion type. Some such models are described later in this chapter.

Patterns of stock price movements within the trading day show
not reversion but momentum. There are also patterns of reversion
within the day but these patterns seem to be difficult to predict
(though there are claims for success here); they occur spasmodi-
cally for broad portfolios, with precursor signals that are not easily
identified. Indeed it may be inappropriate to label the movement
as reversion; reversal may be more indicative of the dynamic. The
distinction is crucial. A reverting process assumes an underlying equi-
librium to which price (or relative prices) tends to return following a
disturbance away from it (the popcorn process). Equilibrating forces
can be identified. The trends and reversals process makes no such
underlying assumption of equilibrium; rather, the process is one that
moves for more or less extended periods in one direction and then
in the other without a strong link from the one move to the next
(a memoryless switching process). Critical to the description and
assessment are the duration and magnitude of the directional moves:
They endure sufficiently long (think of sufficiently many time steps
where each step is visible to a person) and the move is large enough
to be exploited systematically, given necessary lags for turning point
identification.
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Crucial to successful modeling is an understanding of the forces
in the market driving the trend creation. Penny moves are one
important factor, having already removed price friction eliminating
historically innate initial resistance to repeated (and therefore cumu-
latively large) moves. Compounding this is the increasing removal of
human specialists from the price setting process as more trades are
crossed automatically on electronic exchanges and by the brokerage
houses’ trading programs described in Chapter 10. Most significant
are those ‘‘intelligent’’ trading engines and the significant proportion
of transactions preempted as VWAP or TWAP. Old-line technical
analysis may, curiously, retain some efficacy in exploiting the new
intraday trend patterns; but greatest success will inhere to those
whose modeling incorporates knowledge of the underlying motive
forces and algorithmic trading tactics.

Far removed from underlying equilibrating forces, driven by peo-
ple making judgments of fair valuation of company prospects both
short- and long-term, the new paradigm is one of unemotional—
uninterested—rule-based systems continually probing other similar
entities. The process is mechanistic as in a geological process, water
finding the lowest level. Here, however, the rules are defined by
human modelers and not the laws of the physical universe, and they
are changeable. Noise is omnipresent as human traders still directly
preempt a sizable chunk of market activity and originate all transac-
tions. Notwithstanding the noise, the new forces for equilibrium are
searching not for fair relative prices but fair (mutually accepted by
participating entities) market clearing. This new paradigm may be
a reversion (!!!) to an age-old paradigm of economics: perfect com-
petition. Now, on that train of thought one might conjure ideas of
dynamic cobweb algorithms, game theoretic strategies, and perhaps
a necessary repositioning of research into behavioral finance.

Volatility will remain consumed by the algorithms. Instead of
human-to-human interaction either face-to-face on the floor of the
NYSE or face-to-screen-to-face in electronic marts, there will be
algorithm-to-algorithm exchange. A large and growing part of the
emotion surrounding trading is removed, and with that removal
goes volatility. Yet in this focus on algorithms, we must not forget
that people still drive the system. With trades managed by algo-
rithms implemented on incredibly fast processing computers, what
might be done by algorithms designed to go beyond passive market
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participation to active market determination? Possibly probing other
algorithms for weakness, for opportunities to subvert naivete, or to
mislead into false judgment. Warfare by another name. The attrac-
tion for certain managers and the challenge for certain programmers
is irresistible.

Speculation of course, I think.

11.1 CATASTROPHE PROCESS

Since early 2004, spread motions have been observed to exhibit an
asymmetric process where divergence is slow and continuous but
convergence—the ‘‘reversion to the mean’’ of old—is fast(er), even
sudden by comparison. Convergence is not necessarily ‘‘to the mean’’
though it is in the direction of a suitably local view of the mean.
The first two characteristics contrast with those of the popcorn
process, which exhibits a faster-paced departure from the norm and
slower return. The third characteristic, the degree of reversion to an
underlying mean, also distinguishes the two processes: In the newly
emerging process, the extent of the retrenchment move is far more
variable than was the case for the popcorn process.

Now we enter a definitional quagmire, so careful examination
and explication at length is desirable.

Contrast the classical popcorn process with the new process
using Figure 11.1. The notable features of the new process are:
a slow, smooth divergence from local equilibrium; fast reversion
toward that former equilibrium; partial reversion only (in most
cases); repeated moves in quick succession delineating a substantive
local trend away from the underlying equilibrium. (The latter is, as in
all archetypal illustrations, depicted as a constant level. In practice,
it is superimposed, on long-term trend movements—for a positive
trend, turn the page counterclockwise by several degrees to view the
archetype.)

The critical departure in this new ‘‘catastrophe’’ model is the
appearance of local trends within the period classically depicted as
sufficiently local to be constant. The local trend (within a trend) must
now be depicted and formally incorporated in the analysis because
it is part of the opportunity driver and is crucial to the successful
exploitation of the new reversionary moves. It cannot be ignored as
noise on an underlying (popcorn) process.
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FIGURE 11.1 (a) Archetype of the popcorn process showing reversion to a mean
(b) New archetype: catastrophe process

The combination of variable amounts of ‘‘reversion’’ and multi-
ple moves in the same direction before a larger directional shift (singly
or, again, multiple small events) is driven by the interaction of algo-
rithmic trades. (There may be other drivers, but they remain elusive
at this time.) Patient algorithms ease up when prices move repeat-
edly, penny by penny by penny—moves that specialists are keen on
following the change to decimalization and which are undoubtedly
programmed into some algorithms. What used to be a certain inertia
to moves when tick size was substantive, an eighth, is now eagerness
to repeatedly penny. Pennying was ridiculously lucrative at first when
human traders still dominated order flow. The patience and discipline
of algorithms having replaced direct trader involvement have altered
the dynamics of the interaction. The results, which seem now to be
clear, are the catastrophe moves we have described.

Notice the implications for the popcorn process model applied to
the catastrophe process relative price evolution: zero return.

A natural question to ask is, What happens over a longer timescale
than that encompassed in A–C in Figure 11.1? The description just
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FIGURE 11.2 Extended popcorn move with catastrophe moves in detail

given, serial moves in one direction punctuated by partial retrench-
ment, then essentially the same in the opposite direction, as shown
in Figure 11.2, and variant in Figure 11.3, sounds like little more
than a sharper focus on the popcorn process, as if one simply turned
up the magnification to see more of the uninteresting, picture cloud-
ing, uneconomic detail. The proper interpretation is to extend the
time-scale so that the micro moves on the popcorn process become
as time significant as the original popcorn move itself. Thus, the pop-
corn move may require as many as six (or even more) catastrophe
moves to complete—a long time in a dynamic market. Popcorn’s
return even under these ideal conditions is reduced many fold. But
the true picture, returning to Figure 11.1, is seriously worse. Over
the long time period just suggested, the local mean shifts more than
can be assumed away, invalidating the basic popcorn process. At
best, the outcomes become distributed across a range in which the
uninteresting values detract greatly from the interesting, as shown
in Figure 11.4, converting an exploitable structure to a textbook
or journal curiosity. Over the extended duration, the bet becomes
a fundamentally dominated play; for the statistical popcorn process
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not predicated on fundamental analysis, forecast power evaporates
and the return along with it.

11.2 CATASTROPHIC FORECASTS

The magnitude of a catastrophe reversion is not accurately forecast
in comparison to forecasts of the popcorn process. But the great
variation in results from both systems, popcorn applied to popcorn
data, catastrophe to catastrophe data—and where is the cutoff?
Say pre-2002 for popcorn, post–mid-2004 for catastrophe, with
the intermediate 18 months dominated by disruptive influences of
change—means that for a large collection of bets, the statistical
measure R2 is similar. The significance of that observation for trading
is an overall expectation of similar rates of return if the number of
bets in a reasonable period is similar and the overall variation in
the two sets of bets is also similar. Reality, of course, is not so
obligingly straightforward. As the catastrophe process has come
to characterize spread motions more accurately than the popcorn
process, general levels of spread volatility have been decreasing (see
Chapter 9). Before 2003, when the popcorn process provided a valid
representation of spread motions, volatility was nearly double that
prevailing in late 2004, when the catastrophe process provided a
more accurate model. These outcomes are not coincidental. Both are
driven by the increasing market penetration of trading algorithms (as
described in Chapter 10).

A reduction in overall variance of which a similar fraction is
captured by model forecasts—on the face of it, that is a recipe for a
reduction in return commensurate with the variance shrinkage. But
the face, too, is altered, in the shape of shorter duration moves and a
greater frequency of moves. The resulting increase in the number of
bets counters the lower revenue from individual bets. It is a partial
counter only and is itself countered in turn by transaction costs of
the increased bet count. Continued downward pressure on brokerage
and trading technology fees has been and will continue to be an
inevitable result.

At this point the critical question to answer is, How can sys-
tematic exploitation, trading the catastrophe signals, yield desirable
economic results?
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Ideally, one would like to identify the beginning of a catastrophe
jump just before it occurs, allowing sufficient time to make a bet
without market impact, and identify the end of the move soon after
it is over to allow maximal capture of the catastrophe. Neither
identification task has proven easy thus far, but approximations
based on duration measures have been established.

Return to the growth and drop (or decline and jump, if you prefer
the antithetical reversion) archetype catastrophe shown in Figure
11.5. Focusing on the build-up to the catastrophic move, one can
identify a duration rule that signals a bet entry k periods following the
start of the trend development. That trend onset becomes known only
several periods into the move. Statistical analysis reveals a distribution
of trend durations preceding a catastrophic retrenchment, and bet
entry is signaled at a fixed point of that distribution. The eightieth
percentile is a good operating rule.

Timely identification of the discontinuity, the change from diver-
gence to reversion, is critical to successful exploitation of catastrophe
moves. There is much less statistical forgiveness in the timing of a
bet entry than was the case for popcorn moves. The relative speed of
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FIGURE 11.5 Catastrophe move archetype
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the catastrophe reversion makes the opportunity loss from late iden-
tification of a catastrophe much greater than for late identification
of a popcorn move. Failure to enter before the cliff edge, point C
in Figure 11.5, essentially means missing the full opportunity. The
popcorn move seen in Figure 11.3 is quite different. Late entry will
lower return on a bet, but only marginally. Modeling and trading
catastrophe moves must embody a higher state of alertness.

11.3 TREND CHANGE IDENTIFICATION

There is a rich statistical literature on change point identification
with many interesting models and approaches providing plenty of
fascination. Our purpose here is mundane by comparison, though
challenging nonetheless. (If any kind of pattern recognition in finan-
cial data were not so challenging, we would hardly be writing and
reading about it.) An extremely useful approach from statistical
process control relies on Cuscore statistics (Box and Luceno 1987).

Consider first a catastrophe superimposed on an underlying rising
series. Figure 11.6 shows a base trend with slope coefficient 1.0 with
a catastrophe move having slope coefficient 1.3 beginning at time
10. Let’s see how a Cuscore statistic for trend change works in this
readily understood illustration. The Cuscore statistic for detecting a
change in trend is:

Q =
∑

(yt − βt)t

where yt is the series of observations, β is the regular slope coefficient
(the rate of change in the observation series per unit time1) and t is a
time index. The Cuscore is shown in the lower panel of Figure 11.6.
Despite having seen many such graphs for many kinds of time series,

1Models for parametric change have much wider applicability than just time indexed
series, which is our focus here. Spatial models, where observation series are indexed
by geographic location rather than sequentially in time, are employed in many
sciences from geology to seismology (which often has both time and space indexing)
to biology (EEG readings form specific patterns across the head as well as particular
temporal development at each site). In stock price analysis, indexing by trade
volume is employed in trading algorithms (see Chapter 10) and by some statistical
arbitrageurs.
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FIGURE 11.6 Identification of trend change: (a) gradient 1.0 shifts to 1.3 at time
11; (b) Cuscore

I never cease to be amazed at the seemingly magical way in which the
detection statistic uncovers and displays the incontrovertible evidence
of change. The slope increase of 30 percent from initial value 1.0
to subsequent value 1.3 looks, as just written, substantial. Thirty
percent is nearly one-third and that surely is substantive and ought
to make us take notice. But the graph generates a very different
perception. Were it not for the dashed continuation line, we would
be hard-pressed to notice the kink in the line at time 10. The visual
discordance is too small. Pictures may paint many words but here is
a case in which the words are more dramatic.

The dramatic shift from constant to exponential increase in the
Cuscore statistic recovers the situation efficiently and effectively.
Now, how does the Cuscore perform when observed values do
not fall neatly on prescribed mathematical lines? Figure 11.7 adds
random noise (Student t distribution on five degrees of freedom, a
heavier tailed distribution than the normal) to the series depicted
in Figure 11.6. If the slope increase was visually difficult to discern
previously, it is practically impossible now. How does the Cuscore
statistic fare?
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FIGURE 11.7 Cuscore identification of trend change for noisy data: (a) time series;
(b) Cuscore

The illustration in Figure 11.7 is more dramatic than that in the
previous figure over which we were so excited. Eyeball analysis is
of little use here, serving only to generate eyestrain. The Cuscore
statistic, by stark contrast, signals a high probability of a trend
increase by time 15 and practical certainty one or two periods later.

11.3.1 Using the Cuscore to Identify a Catastrophe

In the foregoing examples, the underlying trend was constant and the
coefficient β in the Cuscore statistic was set to the known value of
1.0. Unfortunately, financial series do not come to us packaged with
a convenient quantification of underlying rate of change. We have to
work with the raw observations. Completing the task of identifying
a catastrophe move in a spread series requires the specification of the
underlying trend prior to the potential catastrophe. At first thought,
one might suggest using a local average computed using an EWMA as
recommended in Chapter 3. But a chicken and egg difficulty becomes
apparent almost as soon as the suggestion is made. The local average,
be it EWMA or some other formulation, will be contaminated as
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soon as the catastrophe move begins. The Cuscore will be in the
impossible position of detecting a change in slope using not the new
and old slope quantification but the new quantification and itself.
What is needed is an estimate of the trend if no change had occurred
allowing that a change may have occurred. Since the timing of a
potential change is unknown, what can one do?

Two simple strategies have some efficacy. For underlying trend
estimation in the presence of potential catastrophes, one can use a
substantial period of time, such as several multiples of the catastrophe
duration, obtained from inspection of the empirical distribution of
catastrophe moves in tradeable spreads.2 A second scheme is to
employ an estimate of the slope coefficient obtained from the EWMA
ordinarily found to be sensible for the series under study. The formula
for the modified Cuscore statistic becomes:

Q =
∑

(yt − β̂tt)t

where β̂t is the estimated current slope coefficient. Derivation of β̂t is
given in Appendix 11.1 where the Cuscore statistic for trend change
detection in stock prices is examined in some detail.

Operationally, the statistic works well, but there may be superior
detection procedures for early catastrophe move identification. One
possibility (explored in Appendix 11.1) is to employ a lagged local
trend estimate to avoid the chicken and egg problem. Since it is
‘‘known’’ that catastrophe moves are identified five time-steps after
onset, it is reasonable to estimate the underlying trend by excluding
at least the five most recent series observations.

Why not lag the EWMA by more than five observations, just to
be ‘‘safe’’? (Technically, increase the probability of detecting a catas-
trophe move in the presence of noise when the catastrophe build-up
is ‘‘gentle’’). That is a question of the modeler’s art as well as detec-
tor performance characteristics. Significant relevant considerations

2Identifying catastrophe moves in past data is far simpler than doing so on line. Any
candidate move can be confirmed by later data before it is assigned a classification
and employed in study of identification and characterization rules. On-line decisions
must be made, and trading decisions taken, before such confirmation is possible. Of
course, confirmation is eventually possible but that is after one has made a profit or
incurred a loss.
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as you pursue this investigation are:

■ What is the distribution of differences between underlying trend
and catastrophe precursor trend?

■ What is the distribution of the magnitude of catastrophic rever-
sions?

■ What is the relationship of the magnitude of catastrophic rever-
sions to the duration of the build-up and the magnitude of the
difference between underlying trend and catastrophe precursor
trend?

■ What is the set of catastrophes that is economically desirable to
capture?

■ What is the cost of a false identification of a catastrophe?

Good hunting!

11.3.2 Is It Over?

A popcorn move finishes when the spread series returns to the
(local) mean, plus a bit beyond the mean contributed by stochastic
resonance. When is a catastrophe move complete? I have most
proficiently answered this to date through a fixed duration following
detection of a spike in the opposite direction of the development of
the catastrophe. If the catastrophe developed as an increase over the
underlying trend, as in the previous examples, then the catastrophic
change ending the move would be a sudden decrease.

I have not answered the question with the success achieved in
other areas of statistical arbitrage modeling. Whether the catastrophic
move is a single large move or a trend over several periods, the onset is
revealed by Cuscore monitoring. A second modified Cuscore statistic
is employed, recognizing the nature of the move: The underlying
trend is now the build-up of the catastrophe itself so the appropriate
estimate is based on the interval starting at the estimated onset of
the catastrophe and ending one or two periods before the latest
observation. The Cuscore is specifically looking for a spike in the
opposite direction of the catastrophe build-up; here we allow a spike
to be over one or two periods, hence the need to exclude the latest
couple of observations from the trend estimate. Including them would
put the Cuscore in an impossible position similar to that described
earlier for the catastrophe onset detection.
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Best efforts to date in specifying a bet exit rule, catastrophe over,
is a combination of the duration and magnitude of the catastrophic
move. A significant danger is waiting too long and getting caught in
a subsequent catastrophe which negates the gains of the first. There
is plenty of room here for improvement in modeling and trade rule
prescription.

11.4 CATASTROPHE THEORETIC INTERPRETATION

Algorithms are formulaic and primitive; there is no comparison to
human consciousness. Most traders are inconsistent and unfaithful
to their model(s). Algorithms are dumbly consistent, unimaginative.
Still, with many algorithmic interactions taking place in the market
there may be emergent behaviors, unpredictable from pure analysis
of individual algorithm to algorithm interaction.

Examine the Catastrophe surface3 shown in Figure 11.8. The
catastrophe move, a slow build-up then a sudden drop, is created by

3I chose to call the new reversion pattern the catastrophe process, rather than popcorn
2 or some other label, because it is catchy and does capture the rather different
move dynamic than is both suggested by the name and exhibited by the popcorn
process. The development of an explanatory model of investor behavior, which
might represent why the new style moves occur, is separated from the description
and exploitation of those moves. The underlying elements of algorithm-to-algorithm
interaction and growing popularity and use of trading algorithms in place of direct
human action are undisputed. They are observed facts. Stock price histories are also
incontrovertible facts. The patterns I have discerned in those histories are debatable:
There is a lot of noise in any example I could show.

Trading models built to exploit the dynamics represented by the popcorn and
catastrophe processes have undeniable track records. That is existential proof of
model efficacy and supports the validity of the pattern descriptions, but it does not
prove any theory of why the patterns are the way they are. The popcorn process
has been so long established and so widely exploited at multiple frequencies that
providing a rationale has not received much attention. The rise of a new pattern
with the background of failure (in terms of economic exploitation) of the old also
does not require a rationalization. If it persists and statistical arbitrageurs begin to
discover it and churn out decent returns, once again investors will experience their
own catastrophic shift from skepticism (fear of loss) to hope (greed).

While a rationalization is not necessary for the rise of the phenomenon of
reversion by catastrophe, an understanding of market forces driving new dynamics
and a cogent, plausible theory of how those forces interact and might produce

(Continued)
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continuous moves through a two-dimensional space. The dimensions
correspond to a ‘‘normal’’ factor and a ‘‘splitting’’ factor in catastro-
phe theory parlance. At low levels of the splitting factor, variation
in the normal factor causes smooth variation in the outcome sur-
face. At high levels of the splitting factor, movement in the normal
factor generates outcomes in two distinct regions, separated by a
discontinuity—the catastrophic jump. The discontinuity is asymmet-
ric: Jumps ‘‘up’’ and jumps ‘‘down’’ occur at different levels of the
normal factor for a constant level of splitting factor; this is known
as hysteresis, commonly interpreted as inertia or resistance. (Figure
11.9 shows a cross-section of the catastrophe surface, parallel to
the normal axis, at a high level of splitting factor, illustrating the
asymmetric jump process.)

This is the classical description of the two-dimensional cusp catas-
trophe. Application to stock price development identifies ‘‘avarice’’
with the normal factor and ‘‘fear’’ with the splitting factor. Consider
a movement over the surface beginning at A, with a low level of fear.

emergent patterns is necessary to promote unbiased critical attention in the formative
period. The simple catastrophe theory model presented in the text is offered as one
possible way in which identified market forces recently introduced and growing in
influence as old behaviors and interactions are supplanted might be understood. The
catastrophe model is a plausible representation of what is currently known, but it is
not a formal model from which predictions can be made. V. I. Arnold in Catastrophe
Theory acidly remarks that ‘‘articles on catastrophe theory are distinguished by a
sharp and catastrophic lowering of the level of demands of rigor and also of novelty
of published results.’’ You have been cautioned.

Arnold further remarks, ‘‘In the majority of serious applications. . . the result
was known before the advent of catastrophe theory.’’ The strong implication in
our context, despite the lapse of 20 years since Arnold wrote, is that even if the
representation and interpretation of the model presented is valid, it is probably better
(more rigorously, more convincingly) constructed using tools other than catastrophe
theory. I am, in fact, engaged in research using game theoretic tools to model
trading algorithm interactions. This work is at too early a stage of development to
report here. Finally, to quote Arnold again, ‘‘In applications to the theory of the
behavior of stock market players, like the original premises, so the conclusions are
more of heuristic significance only.’’ My premises are rather more than heuristic,
algorithm-to-algorithm interaction and increasing dominance of algorithms and
removal of direct human interaction, and patterns discerned from stock price data
history being there for anyone to inquire of. Nonetheless, it is quite right to regard the
catastrophe model of market agent behavior as heuristic. In keeping with Arnold’s
tone, I propose to describe the model as the Tadpole theorem with the explicit
intention that it is just a little bit of Pole!
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The price develops smoothly in the direction of B with increasing
avarice. As the price increases further to C (the surface is tilted
upward along the splitting factor axis) fear begins to infect partic-
ipants. Eventually, fear surpasses avarice as the dominant concern
and there is a quick price pullback. What is the nature of the fear?
Simply that the divergence in price from recent local trend is not
fundamentally justified but is promoted by (algorithms’) attempts
to over-exploit buyers. (Algorithms don’t actually experience fear,
or have any experience at all, nor do they act from or demonstrate
emotion. Bear with the sloppy, informal use of descriptive language:
This is a work in progress. I have not by any means established
‘‘the’’ theory. Indeed, as you can see, I am still working on proper
explication of what I have hypothesized about the process underlying
observed price dynamics.) To repeat, algorithms have no conscious
experience. However, algorithms do encapsulate learning about price
movement dynamics (see Chapter 10), knowledge of how much is to
be given up or gained through backing away from the market, and
waiting. All this as well as information on current market moves feeds
into a calculated reaction that has the appearance of fear—pullback.

The depiction of fear and avarice factors represents the combi-
nation of participants—buyers, sellers, specialists—as represented
through their algorithms. The avarice axis measures the maximum
state of avarice affecting traders and specialists: Whoever has the
greediest sentiment of the moment dominates interactions and price
movements. In like manner, the fear axis measures the maximum
state of fear infecting participants.

As buy pressure is seen by the specialist, pennying begins. Trading
algorithms, typically with some pricing room permitted in order to
complete trades, follow the specialist up. Responding, the specialist’s
avarice increases and pennying continues (possibly picking up pace,
though the description here does not require that level of specificity).
As these interactions continue, price is moved higher until trading
algorithms determine that it is time to suspend buying: Calibrated
on much previous data to ‘‘expect’’ how much will be necessary
to complete trades, unemotional algorithms display saintly patience.
Buy pressure eases. Immediately the specialists’ avarice turns to fear.
Keeping price high will generate no profit if buyers stay mute and
there is no business. Sellers share the fear. Price drops precipitously
(in comparison with the rise) to rekindle buyer interest.
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One might ask, Why not smooth decline? Because reaction
to fear is different from satisfying avarice (whether it is fear of
selling too cheaply or buying too expensively), notwithstanding algo-
rithms. Remember that algorithms are designed and coded by people.
Patience. Wait for a significant decline. Therefore, without interme-
diate activity, downward pennying accelerates and, in many cases, is
observed as a multipenny catastrophic drop.

Satisfied that patience has paid off, the cycle begins over again,
very likely from a starting price higher than the starting price of the
original move, as these short-term catastrophic retrenchments are
usually partial. Enthusiasm, avarice, builds again quickly and price
races ahead of the sustainable growth path. Realization sets in, fear,
and equilibrium is quickly, if temporarily, restored.

How does this description of algorithmic interaction and the
resulting behavior of stock prices relate to spreads? Directly. Stock
prices move at differential rates as they always have. The catastrophe
moves of individual stocks naturally combine to generate catastro-
phe moves in spreads. Dynamics are different; scaling is different.
But the basic description is identical.

11.5 IMPLICATIONS FOR RISK MANAGEMENT

A valuable risk management tool in the successful management of
many statistical arbitrage models is the so-called hurdle rate of
return. A model’s forecast function provides an explicit expected
rate of return for any contemplated bet. Managers typically specify
a minimum rate of return, the hurdle, which must be satisfied before
a bet is made to avoid collections of bets that are, in the aggregate,
probabilistically sure losers. In times of perceived heightened general
risk, typically exemplified by increased volatility, actual or expected,
a standard practice is to raise the hurdle. This prophylactic action is
designed to avoid entering reversion bets early, while divergence is still
a strong force, thereby avoiding initial losses and, hence, increasing
return. The tactic is a broad sweep action that is appropriate when
concern is of a general increase in variation not focused on specific
market sectors or stocks. (The tactic can, of course, be directed
toward specific market sectors or other collections of stocks if there
is reason to be so concerned.)

For the popcorn process, the basic forecast function is a constant,
the value at any time being reasonably computed as an EWMA (with
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more sophisticated modelers employing local trend components, too,
depending on the time scale over which the move is exploited).
When the spread pops, the expected return is calculated as a fraction
of the deviation between the spread and the forecast value. When
volatility is expected to increase, the pops will be expected to increase
in magnitude; waiting for larger pops is obviously sensible. (Slow,
rather than sudden, increases in volatility are automatically managed,
feeding into dynamic recalibration of models. The scenario we are
concerned with here is an increase of sufficient magnitude in a short
interval that is outside the capacity of automatic model adjustment.
That is a risk scenario rather than ordinary evolution dynamics.) The
point is that the expectation-based information is not accessible to
the model from data analysis, but it can be communicated by the
modeler.

Are the considerations of risk, sudden nonspecific increases in
volatility, any different from those just articulated when considering
catastrophe moves? At first blush it does not appear so. Catastrophe
moves are a convergence following a divergence, so rescaling for a
spike in volatility is just as relevant as it is for popcorn (or other
reversion) models. That first blush might be of embarrassment upon
further reflection. Since early 2004 when the catastrophe process
emerged as the better descriptor of local price and spread motions,
the general level of market (and spread) volatility has been historically
low (see Chapter 9). We do not have any empirical guidance on what
will happen when volatility spikes. Rescaling of local catastrophe
moves may be the result. But it could easily be something different.
A good argument can be made that increased volatility will swamp
the catastrophes, certainly sinking the ability to identify and exploit
them on line, leading to the return of the popcorn process. Is such a
development more than theoretically conceivable if the hypothesis of
algorithmic interaction driving price dynamics is and remains true?
What would cause volatility to spike? People, of course. Algorithms
are tools. Ultimately, people drive the process. We are largely in the
realm of speculation at this point. Here are a couple of further points
to guide your thinking:

■ Waiting longer in a local trend: a duration criterion rather than
expected rate of return criterion. (Is there a return forecast that
can be combined?)
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■ Waiting longer for a bigger build-up means fewer opportunities
and the catastrophic response is unchanged because in the catas-
trophe move, the reaction is not to the mean but toward an old,
not really relevant, benchmark level.

11.6 SIGN OFF

The new paradigm is as yet in an inchoate state. It is actually
two paradigms, a mix of a continued variant of the old reversion
paradigm as interstock volatility increases, and the new trend and
reversal paradigm just outlined.

Traditional interstock volatility driven reversion plays may stage
a resurgence in appeal as a source of systematic return. Rising inter-
est rates, increasing entrepreneurial risk-taking activity, or possibly
a sudden recession-induced market scramble, are the drivers of this
potential. The potential is there but the extent of the opportunity will
be limited, returns constrained by the structural impact of decimal-
ization, patient institutional trading (VWAP and other algorithms),
and simple competition (Chapter 9).

The promise of the new paradigm is certain. However, it is not
yet screaming—perhaps this kind of scream will only be heard, like
Santa’s sleigh bells, by believers?

APPENDIX 11.1: UNDERSTANDING
THE CUSCORE

The Cuscore statistic for detecting a change in trend was developed
by statisticians working in industrial process control where the goal is
to be alerted as soon as possible when a process requires adjustment.
An example is production of ball bearings of a specified diameter.
The target mean (diameter) is known. Samples of ball bearings are
taken sequentially and measured, the average diameter calculated and
plotted on a chart. Deviations from the target mean occur over time
as the production machine is subject to wear. Ball bearing diameters
begin to increase. A plot of the Cuscore statistic reveals the onset of
wear very quickly. (In practice, the range of diameters in the samples
would also be monitored; different kinds of machine wear create
different kinds of output variation.)
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In engineering applications, like the ball bearing example, the
underlying level is a known target value. Thus, in the Cuscore for
detecting a change in trend,

∑
(yt − βt)t, the slope coefficient, β, is

given. As we noted in section 11.3.1, the situation with stock price
data is different. There is no target price at which one can direct
a causal mechanism (notwithstanding hopeful prognostications of
analysts). Therefore, to detect a change in price trends, an estimate of
what the trend is changing from is required. Calculating an up-to-date
estimate of what the trend is believed to be, a local trend estimate, is
the way forward. Monitoring a time sequence of local trend estimates
itself provides direct evidence about change therein.

In this appendix we examine the detail of the Cuscore for trend
change detection. The study reveals how the Cuscore works and the
problems inherent in the use of locally estimated trends. This latter is
crucial. Insight about how estimated trends affect the Cuscore is criti-
cal to successful implementation of the detector and, hence, to online
exploitation of catastrophe moves. Without timely identification,
there is no economically desirable real opportunity.

In Figure 11.10, the line ABC is an archetype of a change of trend,
the first segment, AB, having slope 0.5 and the second segment, BC,
having slope 1.5. The dashed line BD is the continuation of line AB.
The dashed line AE is parallel to segment BC, having slope 1.5. We
will use these straight line segments—suppose them to be noise-free
price traces to fix ideas, if that helps—to demonstrate the effects on
the Cuscore statistic from different assumptions about an underlying
trend when looking for a change in that trend. Knowledge of results
in the noise-free, theoretical model will guide our expectations when
we investigate noisy price series.

The Cuscore,
∑

(yt − βt)t, is the cumulative sum of deviations
of the observation series, yt, and the expected value assuming the
slope β. In Figure 11.10, that translates into the vertical separation
of y from the line segment AD. The first observation is that all points
on AD will generate a zero contribution to Q. If there is no slope
change, Q is identically zero.

When the slope changes, observations depart from the expected
value under the base model (of no change). Values of y along the line
segment BC exceed the expected values on line segment BD by an
increasing amount with time. Cumulating these deviations in Q we
obtain the trace labeled 1 in Figure 11.11.
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FIGURE 11.10 Trend change archetype and Cuscore contribution detail

Now suppose that we do not know in advance the slope of
line segments AB and BC or that there is a change in slope at B.
Suppose instead, that beginning at A, our best understanding is that
the process should exhibit a slope of 1.0 as shown by line segment
AC (not drawn to reduce clutter). The Cuscore is shown as the
trace labeled 2 in Figure 11.11. Once again, the visual appearance
of the Cuscore is startling. Deviations of a series from an assumed
base model—a difference in the slope of a trend—are made starkly
evident. This second example reveals both the occurrence of a change
(the inflection point in the Cuscore trace) and the information that
the series begins with a smaller slope than hypothesized and switches
to a slope larger than hypothesized.

At this point, you probably have an inkling (or more) about the
next few steps.

Review Figure 11.2. The first three catastrophe moves compound
a strong positive trend; the subsequent moves compound a variably
declining trend. How can we operationally, in real time, provide
the Cuscore with a reasonable chance of detecting the superim-
posed catastrophes from the underlying, longer-term trend changes?
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FIGURE 11.11 Cuscore with β = 0 and β = 1

An answer offered in the main text is to use a local trend estimate.
Let’s examine how the Cuscore behaves when a known, constant
trend is replaced with a local estimate.

In Figure 11.12, the EWMA consistently underestimates the real
series; that is a well known feature of moving averages, weighted or
otherwise, which are not designed to project a persistent trend. The
Cuscore reflects the ‘‘always trying to catch up’’ condition showing
an increasing value from the beginning of the series. The slope change
is captured, the rate of increase in the Cuscore is picking up, but
the strength of inference is slow to build compared with the Cuscore
using a known constant trend. The slowness problem comes directly
from the use of the EWMA after the slope change. In Figure 11.12,
the Cuscore contributions are the differences between the new slope
and the projected old slope (vertical differences BC–BD) exemplified
by p − q. With an estimated level, the projection of the initial trend
AB to BD generating p − q is replaced with the EWMA generating
the much smaller deviance p − r. This is the chicken and egg problem.
We need to project the early trend beyond the change point, which is
unknown, to quickly detect that change point!
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Updating the local mean estimate after the slope change reduces
the sensitivity of the Cuscore to detect that change. This suggests that
sensitivity might be recovered by delaying the local mean update.
What happens if a lagged local mean estimate is used in the Cuscore?
Returning to Figure 11.12, the Cuscore contribution postchange
increases from p − r to p − s, much nearer to the desirable p − q.
Unfortunately, this move does not eliminate the chicken and egg
problem; it simply relocates the henhouse! While the postchange
contributions to the Cuscore are indeed larger, so are the prechange
contributions. Thus, accurately distinguishing a change in the Cus-
core trace is not more easily accomplished: Premature signaling
may be the frequent result. Reducing the lag—we used five periods
because analysis of a catalog of identified catastrophe moves in price
histories strongly suggested that most such moves with subsequent
economically exploitable catastrophe retrenchments are identifiable
five periods into the move—might help, but as soon as we move
from noiseless archetypes to noisy real data, the situation returns to
nearly hopeless.

What we are searching for is something in the data that quickly
and consistently registers a substantive change following the trend
change. In Figure 11.12 the EWMA trace responds quickly to the
trend change. Perhaps an estimate of local trend from the EWMA
might be a sensitive diagnostic? Figure 11.13 shows the estimated
slope coefficient computed as the average change in the EWMA over
the most recent four periods:

β̂t = 0.25(EWMAt − EWMAt−4)

This estimate shows none of the tardiness of the EWMA-based
Cuscore. Unfortunately, as soon as even modest noise is added to the
original series, the slope coefficient estimate deteriorates considerably
as a sensitive diagnostic, though the sensitivity is greater for a longer
window when the underlying trend is constant other than at the point
of focus here, as shown in Figure 11.14.

At this point we have two candidates for trend change detection,
the Cuscore using a local mean estimate (EWMA) and local slope
coefficient estimates based on the EWMA, each of which looks
somewhat promising. The Cuscore signals the change but is tardy,
the slope signals the change but is also tardy when noisy data is
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FIGURE 11.13 Estimated slope coefficient, β̂t = 0.25(EWMAt − EWMAt−4)

examined. Perhaps combining the two might amplify the result?
What do two ‘‘tardies’’ make? Before we reveal that, let’s review
the collection of Cuscore statistics examined so far. Figure 11.15
demonstrates the collection of Cuscore statics introduced in this
appendix applied to the noiseless trend change series. Qtheo is the
original Cuscore in which the initial trend is known. Qmm is the
Cuscore using a local mean estimate (EWMA), Qmmlag is the Cuscore
using a lagged local mean estimate, Qb1 is the Cuscore using a locally
estimated slope, Qb1lag is the Cuscore using a locally estimated slope
from the lagged local mean, and Qbtrue is the Cuscore using the actual
before and after change slope coefficients. That’s a lot of Cuscores!

Qtheo and Qbtrue are theoretical benchmarks we would like an
operational Cuscore to approach as closely as possible. Qbtrue is
singularly interesting. Return for a moment to Figure 11.10. Qbtrue
cumulates deviations from the known line segment AB, so the value
is identically zero for t = 1 through t = 20. At t = 21 we switch from
the old slope coefficient β = 0.5 to the new slope coefficient β = 1.5
and thence begin cumulating deviations between observations on line



(a)

0 10 20 30 40

0 10 20 30 40

0

10

20

30

40

50

60

observation series
EWMA

(b)

0.0

0.5

1.0

1.5

FIGURE 11.14 (a) Trend change with noise; (b) estimated slope coefficient,
β̂t = 0.25(EWMAt − EWMAt−4)
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FIGURE 11.15 Cuscores for several models

segment BC and the line AE, which is the new base model, assuming
gradient β = 1.5 from inception.

AE is parallel to BC (both have gradient β = 1.5) so the growth
of Q is linear as the deviations are constant. This contrasts with
the standard Cuscore in which the individual deviations increase
sequentially (excluding noise) and, hence, the cumulative sum grows
faster than linearly (Qtheo). Qbtrue has the initial advantage over Qtheo
because the deviations begin large, hence, the speed of detection of
change is faster. The advantage is a function of the relative size
of the two gradients and the time origin of the cumulation—the
duration of segment AB. In our task of identifying catastrophes, the
larger the prechange duration, the greater the discrepancies (AE–BC)
feeding the Cuscore, the greater the initial advantage over the stan-
dard Cuscore and, therefore, the sooner the likely identification of a
trend change. Which of the noisy sample versions of the theoretical
benchmarks, Qb1 or Qmm, dominates in practical catastrophe iden-
tification depends on the dynamics of the catastrophes and precursor
periods.

Earlier we remarked that Qtheo and Qbtrue are theoretical bench-
marks that we would like an operational Cuscore to approach as
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FIGURE 11.16 Cuscores for noisy data

closely as possible. Remarkably Qb̂, our ‘‘product of two tardies’’
Cuscore, achieves an impressive standard of closeness with noise-
less data. How is this possible? It is because larger discrepancies
between the observation and the estimated local mean (because of
the laggardly performance of the EWMA in the presence of sustained
trending) are multiplied by a larger estimated slope following the
change. The efficacy of the Cuscore is not so much the result of two
tardies but of two enhanced discrepancies focused on a specific type
of change. Does the scheme really work with price data? Look at
Figure 11.16 and decide. And then think about how one might detect
decreases in trend.

The presentation in this appendix is rather informal. For a rig-
orous treatment of dynamic modeling and identification of change,
see Pole et al, 1994. In that reference, the linear growth model pro-
vides explicit parameterization of a local mean and trend (growth),
dynamic updating of parameter estimates and forecasts, and formal
statistical diagnostics for parametric (slope, in our case) change.
The standard distributional assumptions of the DLM are strictly not
appropriate for stock price data, largely because of notable nonnor-
mality of (normalized) price and return distributions. Nonetheless,
the models are useful if one takes a robust view of the formalities,
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concentrating on mean estimates, using standard deviations as a
guide to uncertainty, and not counting on normality at all (so-called
Linear Bayes methods).

Happy catastrophe hunting!
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