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http://scikit-learn.org/stable/auto_examples/index.html
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CAPM Model

Portfolio % r=204

[ a%, b%, c%]

abs (a%) +abs(b%)+ abs(c%) = 100%




Market Portfolio

SP500
PR
Etc




N AR ICAPM model

r;(t) = beta; * 1;,,(t) + alpha;(t)

CAPM says
E(alpha(t)) =0

Linear scaled return of the market, with some noise at mean 0.
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r;(t) = beta; * 1;,,(t) + alpha;(t)
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MAEERFES (APT)

r;(t) = beta; * 1, (t) + alpha;(t)

Beta N2, Mg 1R E.

Beta = w*r
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Stock A: +1% mkt , beta=1.0

Stock B: -1% mkt , beta_b =2.0

Long A, short B.
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Momentum ZJ &2k mom([t] = price[t] / (price[t-n]) — 1

SMA : Simple Moving Average. (smooth, laggged) ... F] LLEE—Fh e 28

BB (bollinger bands) BOLLf&E#R :  HRIKILF & N D%




Normalization

SMA —0.5 +0.5
Mom —0.5, +0.5
BB —1, +1

Norm = (value — mean)/values.std()
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Sales
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TV Radio Newspaper

Shown are Sales vs TV, Radio and Newspaper, with a blue
linear-regression line fit separately to each.

Can we predict Sales using these three?

Perhaps we can do better using a model

Sales =~ f(TV,Radio,Newspaper)



Here Sales is a response or target that we wish to predict. We
generically refer to the response as Y.

TV is a feature, or input, or predictor; we name it Xj.

Likewise name Radio as X», and so on.

We can refer to the input vector collectively as

X1
X =1 X5
X3
Now we write our model as
Y =f(X)+e

where € captures measurement errors and other discrepancies.



e With a good f we can make predictions of Y at new points
X =m.

e We can understand which components of
X = (X1,X3,...,X,) are important in explaining Y, and
which are irrelevant. e.g. Seniority and Years of
Education have a big impact on Income, but Marital
Status typically does not.

e Depending on the complexity of f, we may be able to
understand how each component X; of X affects Y.



Is there an ideal f(X)? In particular, what is a good value for
f(X) at any selected value of X, say X = 4?7 There can be
many Y values at X = 4. A good value is

f(4) = E(Y|X =4)
E(Y|X = 4) means expected value (average) of Y given X = 4.

This ideal f(x) = E(Y|X = x) is called the regression function.



e Typically we have few if any data points with X =4
exactly.

e So we cannot compute E(Y|X = z)!

e Relax the definition and let

f(@) = Ave(Y|X € N(z))

where N (z) is some neighborhood of x.




The linear model is an important example of a parametric
model:

fo(X) = Bo+ 81Xy + BoXo + ... BpX).

e A linear model is specified in terms of p + 1 parameters
/807/817 IR 7/619'

e We estimate the parameters by fitting the model to
training data.

e Although it is almost never correct, a linear model often
serves as a good and interpretable approximation to the
unknown true function f(X).



A linear model f1,(X) = By + B1X gives a reasonable fit here
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A quadratic model fQ (X) = By + B1X + B2 X2 fits slightly
better.
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Simulated example. Red points are simulated values for income
from the model

income = f(education, seniority) + €

f is the blue surface.
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Linear regression model fit to the simulated data.

fr(education, seniority) =

Bo-i—Bl X education-l—Bz Xseniority
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Even more flexible spline regression model

fs(education, seniority) fit to the simulated data. Here the
fitted model makes no errors on the training data! Also known
as overfitting.
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Black curve is truth. Red curve on right is MSE+., grey curve is
MSET,. Orange, blue and green curves/squares correspond to fits of
different flexibility.




Suppose we have fit a model f (z) to some training data Tr, and
let (xg,y0) be a test observation drawn from the population. If
the true model is Y = f(X) + € (with f(z) = E(Y|X = x)),
then

2 (w0~ f(z0))” = Var(f(z0)) + [Bias(f(xo))]? + Var(c)

The expectation averages over the variability of yo as well as
the variability in Tr. Note that Bias(f(xg))] = E|[f(x0)] — f(z0o).

Typically as the flexibility of f increases, its variance increases,
and its bias decreases. So choosing the flexibility based on
average test error amounts to a bias-variance trade-off.
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